【题目】设函数,其中为实数.
(1)已知函数是奇函数,直线是曲线的切线,且, ,求直线的方程;
(2)讨论的单调性.
【答案】(1) 6x+3y﹣1=0或2x+y+5=0 (2)见解析
【解析】试题分析:(1)根据函数g(x)=f(x)﹣f′(x)是奇函数可求出a的值,然后根据l1⊥l2可求出l1的斜率,从而可求出切点坐标,求出切线方程;
(2)先求函数f(x)的导函数f′(x),再解不等式f′(x)>0和f′(x)<0即可得函数的单调区间,本题需讨论a与﹣和0的大小关系.
试题解析:
解:(1)∵,
∴f′(x)=ax2﹣x﹣(a+1)
则g(x)=f(x)﹣f′(x)=﹣ax2+x+(a+1)=
∵函数g(x)=f(x)﹣f′(x)是奇函数∴+a=0即a=﹣则f′(x)=﹣x2﹣x﹣
∵l1⊥l2,l2:x﹣2y﹣8=0
∴l1的斜率为﹣2,即f′(x)=﹣x2﹣x﹣=﹣2解得x=1或﹣3
即切点为(1,﹣)或(﹣3,1)
∴直线l1的方程为6x+3y﹣1=0或2x+y+5=0
(2)f′(x)=ax2﹣x﹣(a+1)=(ax﹣a﹣1)(x+1)
当a=0时,f′(x)=﹣x﹣1,当x∈(﹣∞,﹣1)时,f′(x)>0,当x∈(﹣1,+∞)时,f′(x)<0
∴函数f(x)的单调增区间为(﹣∞,﹣1),单调递减区间为(﹣1,+∞)
当a>0时,当x∈(﹣∞,﹣1)时,f′(x)>0,当x∈(﹣1,1+)时,f′(x)<0,当x∈(1+,+∞)时,f′(x)>0
∴函数f(x)的单调增区间为(﹣∞,﹣1),(1+,+∞)单调递减区间为(﹣1,1+)
当﹣<a<0时,当x∈(﹣∞,1+)时,f′(x)<0,当x∈(1+,﹣1)时,f′(x)>0,当x∈(﹣1,+∞)时,f′(x)<0
∴函数f(x)的单调增区间为(1+,﹣1)单调递减区间为(﹣∞,1+
当a=﹣时,f′(x)≤0恒成立,即函数单调递减区间为(﹣∞,+∞)
当a<﹣时,当x∈(﹣∞,﹣1)时,f′(x)<0,当x∈(﹣1,1+)时,f′(x)>0,当x∈(1+,+∞)时,f′(x)<0
∴函数f(x)的单调增区间为(﹣1,1+)单调递减区间为(﹣∞,﹣1),(1+,+∞)
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是( )
A. 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为, , 的学生,这样的抽样方法是系统抽样法
B. 线性回归直线一定过样本中心点
C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D. 若一组数据1、、3的平均数是2,则该组数据的方差是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,点为短轴的一个端点, ,若点在椭圆上,则点称为点的一个“椭点”.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于、两点,且两点的“椭点”分别为,以为直径的圆经过坐标原点,试求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= .
(1)求函数f(x)在[0,2]上得单调区间;
(2)当m=0,k∈R时,求函数g(x)=f(x)﹣kx2在R上零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)当p=1时,若抛物线C上存在关于直线l对称的相异两点P和Q.求线段PQ的中点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数f(x)=sinx+ cosx(x∈R),先将y=f(x)的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x= 对称,则θ的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com