【题目】为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了
人,他们年龄的频数分布及赞同“就近入学”人数如表:
年龄 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
赞同 |
|
|
|
|
|
|
(Ⅰ)在该样本中随机抽取
人,求至少
人支持“就近入学”的概率;
(Ⅱ)若对年龄在
,
的被调查人中各随机选取
两人进行调查,记选中的
人支持“就近入学”人数为
,求随机变量
的分布列及数学期望。
科目:高中数学 来源: 题型:
【题目】已知
、
分别是椭圆
的左、右焦点,点
是椭圆
上一点,且
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
相交于
,
两点,若
,其中
为坐标原点,判断
到直线
的距离是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站随机抽取3个进行车站服务满意度调查.
(1)求抽取的车站中含有佛山市内车站(包括三水南站和佛山西站)的概率;
(2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X,求X的分布列及其均值(即数学期望).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有关于
的一元二次方程
.
(Ⅰ)若
是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若
是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的焦点是椭圆
:
(
)的顶点,且椭圆与双曲线的离心率互为倒数.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设动点
,
在椭圆
上,且
,记直线
在
轴上的截距为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,下列命题正确的是( )
A.若平面
内有无数条直线与直线
平行,则
∥![]()
B.若平面
内有无数条直线与平面
平行,则
∥![]()
C.若平面
内有无数条直线与直线
垂直,则![]()
D.若平面
内有无数条直线与平面
垂直,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为自然对数的底)。
(Ⅰ)求函数
的单调区间;
(Ⅱ)若存在均属于区间
的
,
,且
,使
,证明:
;
(Ⅲ)对于函数
与
定义域内的任意实数
,若存在常数
,
,使得
和
都成立,则称直线
为函数
与
的分界线。试探究当
时,函数
与
是否存在“分界线”?若存在,请给予证明,并求出
,
的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)
![]()
(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.
(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com