精英家教网 > 高中数学 > 题目详情
19.已知A(2,4),B(1,1),C(4,2).给出平面区域为三角形ABC的内部及其边界,若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a值等于(  )
A.$\frac{1}{3}$B.6C.3D.1

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.

解答 解:由z=ax+y(a>0)得y=-ax+z(a>0)
直线y=-ax+z(a>0)是斜率为-a,y轴上的截距为z的直线,
从题图可以看出,当-a等于直线AC的斜率时,
目标函数取得最大值的最优解有无穷多个,线段AC上的所有点都是最优解.
则-a=kAC=$\frac{4-2}{2-4}$=-1,
∴a=1,
故选:D.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知两个不同的平面α,β和两条不重合的直线m,n,则下列命题正确的是(  )
A.若m∥n,n?α,则m∥αB.若α⊥β,α∩β=n,m⊥n,则m⊥β
C.若m?α,n?α,m∥β,n∥β,则α∥βD.若m⊥β,m?α,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:x-2y+2=0过椭圆的上焦点F1和一个顶点B,该椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校高三年级100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100],这100名学生数学成绩在[70,100]分数段内的人数为(  )
A.60B.55C.50D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组中的两个函数是同一函数的是(  )
A.f(x)=$\frac{{x}^{2}-1}{x-1}$和f(x)=x+1
B.f(r)=πr2(r≥0)和g(x)=πx2(x≥0)
C.f(x)=logaax(a>0且a≠1)和g(x)=${a}^{lo{g}_{a}x}$(a>0且a≠1)
D.f(x)=x和g(t)和g(t)=$\sqrt{{t}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图ABCD为正方形,VD⊥平面ABCD,VD=AD=2,F为VA中点,E为CD中点.
①求证:DF∥平面VEB;
②求平面VEB与平面VAD所成二面角的余弦值;
③V、D、C、B四点在同一个球面上,所在球的球面面积为S,求S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ),
(1)若θ=0,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求f(x)的值域;
(2)若f(x)的图象关于原点对称,且θ∈(0,π),求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an+1=2an+2n,n∈N*,a1=1,bn=$\frac{a_n}{2^n}$
(1)证明数列{bn}为等差数列.
(2)求数列{an}的通项公式an与前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x|log${\;}_{\sqrt{2}}$x<2},B={x|x-1|≤2},则(CRA)∩B=(  )
A.[-1,0]∪[2,3]B.(-1,0)∪(2,3)C.[2,3]D.(2,3]

查看答案和解析>>

同步练习册答案