精英家教网 > 高中数学 > 题目详情
7.某校高三年级100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100],这100名学生数学成绩在[70,100]分数段内的人数为(  )
A.60B.55C.50D.45

分析 根据频率分布直方图,利用频率和为1,求出a的值,再计算数学成绩在[70,100]分数段内的频率与频数.

解答 解:根据频率分布直方图,得;
数学成绩在[90,100]分数段内的频率为10a,
由频率和等于1,得
(2a+0.02+0.03+0.04)×10=1,
解得a=0.005;
∴数学成绩在[70,100]分数段内的频率为
1-(0.005+0.04)×10=0.55,
对应的人数为
100×0.55=55.
故选:B.

点评 本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的关系,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.椭圆方程为9x2+4y2=36,P为椭圆上任一点,F1,F2为焦点,则|PF1|+|PF2|=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y-1=0相交于A,B两点,且线段AB的中点在直线y=x上.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若椭圆的右焦点关于直线y=$\frac{1}{2}$x的对称点的横坐标为x0=$\frac{6}{5}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等比数列{an}满足q>1,且a1+a6=11,a3a4=$\frac{32}{9}$.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,恰使$\frac{2}{3}$am-1,am2,am+1+$\frac{4}{9}$这三个数依次成等差数列,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正三角形ABC的边长为4,将它沿高AD翻折,使得点B与点C的距离为2,此时四面体ABCD的外接球的表面积为$\frac{52π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题P:对x∈[1,2],不等式x2≥k恒成立,命题Q:关于x的方程x2-x+k=0有实数根,如果命题“¬P”为假,命题“P∧Q”为假,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(2,4),B(1,1),C(4,2).给出平面区域为三角形ABC的内部及其边界,若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a值等于(  )
A.$\frac{1}{3}$B.6C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,一份印刷品的排版面积(虚线边框矩形)为4000cm2,它的两边都留有宽为a(单位:cm)的空白,顶部和底部都留有宽为b(单位:cm)的空白,已知a,b的值分别为4和10.
(1)若设虚线边框矩形的长为x(单位:cm),宽为y(单位:cm),求纸的用量S(x)关于x的函数解析式;
(2)要使纸的用量最少,x,y的值应分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x3+2mx2+mx+1在R上是单调函数,则m的取值范围为[0,$\frac{3}{4}$].

查看答案和解析>>

同步练习册答案