6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}}\right.$£¬£¨tΪ²ÎÊý£©£¬ÔÚÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢µÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=-\sqrt{2}$£¬A£¬BÁ½µãµÄ¼«×ø±ê·Ö±ðΪ$A£¨2£¬\frac{¦Ð}{2}£©£¬B£¨2£¬¦Ð£©$£®
£¨1£©ÇóÔ²CµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©µãPÊÇÔ²CÉÏÈÎÒ»µã£¬Çó¡÷PABÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÔ²CµÄ²ÎÊý·½³ÌÏûÈ¥tµÃµ½Ô²CµÄÆÕͨ·½³Ì£¬ÓÉÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬ÀûÓÃÁ½½ÇºÍÓë²îµÄÓàÏÒº¯Êý¹«Ê½»¯¼ò£¬¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦Èת»¯ÎªÖ±½Ç×ø±ê·½³Ì¼´¿É£»
£¨2£©½«AÓëBµÄ¼«×ø±ê»¯ÎªÖ±½Ç×ø±ê£¬²¢Çó³ö|AB|µÄ³¤£¬¸ù¾ÝPÔÚÔ²CÉÏ£¬Éè³öP×ø±ê£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ±íʾ³öPµ½Ö±ÏßlµÄ¾àÀ룬ÀûÓÃÓàÏÒº¯ÊýµÄÖµÓòÈ·¶¨³ö×îСֵ£¬¼´¿ÉÈ·¶¨³öÈý½ÇÐÎPABÃæ»ýµÄ×îСֵ£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$£¬»¯¼òµÃ£º$\left\{\begin{array}{l}{x+5=\sqrt{2}cost}\\{y-3=\sqrt{2}sint}\end{array}\right.$£¬
ÏûÈ¥²ÎÊýt£¬µÃ£¨x+5£©2+£¨y-3£©2=2£¬
¡àÔ²CµÄÆÕͨ·½³ÌΪ£¨x+5£©2+£¨y-3£©2=2£®
ÓɦÑcos£¨¦È+$\frac{¦Ð}{4}$£©=-$\sqrt{2}$£¬»¯¼òµÃ$\frac{\sqrt{2}}{2}$¦Ñcos¦È-$\frac{\sqrt{2}}{2}$¦Ñsin¦È=-$\sqrt{2}$£¬
¼´¦Ñcos¦È-¦Ñsin¦È=-2£¬¼´x-y+2=0£¬
ÔòÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y+2=0£»
£¨¢ò£©½«A£¨2£¬$\frac{¦Ð}{2}$£©£¬B£¨2£¬¦Ð£©»¯ÎªÖ±½Ç×ø±êΪA£¨0£¬2£©£¬B£¨-2£¬0£©£¬
¡à|AB|=$\sqrt{£¨0+2£©^{2}+£¨2-0£©^{2}}$=2$\sqrt{2}$£¬
ÉèPµãµÄ×ø±êΪ£¨-5+$\sqrt{2}$cost£¬3+$\sqrt{2}$sint£©£¬
¡àPµãµ½Ö±ÏßlµÄ¾àÀëΪd=$\frac{|-5+\sqrt{2}cost-3-\sqrt{2}sint+2|}{\sqrt{2}}$=$\frac{{|{-6+2cos£¨{t+\frac{¦Ð}{4}}£©}|}}{{\sqrt{2}}}$£¬
¡àdmin=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$£¬
Ôò¡÷PABÃæ»ýµÄ×îСֵÊÇS=$\frac{1}{2}$¡Á2$\sqrt{2}$¡Á2$\sqrt{2}$=4£®

µãÆÀ ´ËÌ⿼²éÁËÔ²µÄ²ÎÊý·½³Ì£¬ÒÔ¼°¼òµ¥ÇúÏߵļ«×ø±ê·½³Ì£¬ÊìÁ·ÕÆÎÕ²ÎÊý·½³ÌÓëÆÕͨ·½³Ì¼äµÄת»»ÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬ÔòÕâ¸ö¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®16cm3B£®20cm3C£®24cm3D£®30cm3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+y=10}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=3x+3yµÄ×î´óֵΪ30£¬¸ÃÏßÐԹ滮ÓÐÎÞÊý¸ö×îÓŽ⣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=asin£¨2x+¦Õ£©+cos£¨2x+¦Õ£©£¬£¨a£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ×î´óֵΪ2£¬ÇÒf£¨-x£©=f£¨x£©£¬Ôòa£¬¦ÕµÄȡֵ·Ö±ðΪ£¨¡¡¡¡£©
A£®a=1£¬¦Õ=$\frac{¦Ð}{3}$B£®a=1£¬¦Õ=$\frac{¦Ð}{6}$C£®a=$\sqrt{3}$£¬¦Õ=$\frac{¦Ð}{3}$D£®a=$\sqrt{3}$£¬¦Õ=$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®a¡ÊR£¬É躯Êýf£¨x£©=£¨-x2+ax£©e-x£¬x¡ÊR£®
£¨1£©µ±a=-2ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷¼õÇø¼ä£»
£¨2£©Èôx¡Ê£¨-1£¬1£©ÄÚµ¥µ÷µÝ¼õ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=2x3-3x2£¬
£¨1£©Çóº¯Êýf£¨x£©µÄ¼«´óÖµºÍ¼«Ð¡Öµ£¬
£¨2£©Çóx=2ʱº¯Êýf£¨x£©=2x3-3x2µÄÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎªÁ˽â½ñÄêijУ¸ßÈý±ÏÒµ°à×¼±¸±¨¿¼·ÉÐÐԱѧÉúµÄÌåÖØÇé¿ö£¬½«ËùµÃµÄÊý¾ÝÕûÀíºó£¬»­³öÁËÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬ÒÑ֪ͼÖдÓ×óµ½ÓÒµÄǰ3¸öС×éµÄƵÂÊÖ®±ÈΪ1£º2£º3£¬ÆäÖеÚ2С×éµÄƵÊýΪ12£®
£¨¢ñ£©Çó¸ÃУ±¨¿¼·ÉÐÐÔ±µÄ×ÜÈËÊý£»
£¨¢ò£©ÒÔÕâËùѧУµÄÑù±¾Êý¾ÝÀ´¹À¼ÆÈ«Ê¡µÄ×ÜÌåÊý¾Ý£¬Èô´Óȫʡ±¨¿¼·ÉÐÐÔ±µÄͬѧÖУ¨ÈËÊýºÜ¶à£©ÈÎÑ¡ÈýÈË£¬ÉèX±íʾÌåÖØ³¬¹ý60¹«½ïµÄѧÉúÈËÊý£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬acosC+$\sqrt{3}$asinC-b-c=0£®
£¨1£©ÇóA£»
£¨2£©ÈôµÈ²îÊýÁÐ{an}µÄ¹«²î²»ÎªÁ㣬ÇÒa1cosA=1£¬ÇÒa2£¬a4£¬a8³ÉµÈ±ÈÊýÁУ¬Çó{$\frac{4}{{a}_{n}{a}_{n+1}}$}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=x£¨1-a|x|£©£®
£¨1£©µ±a£¾0ʱ£¬¹ØÓÚxµÄ·½³Ìf£¨x£©=aÓÐÈý¸öÏàÒìʵ¸ùx1£¬x2£¬x3£¬Éèx1£¼x2£¼x3£¬Çó$\frac{{x}_{1}}{{x}_{2}+{x}_{3}}$µÄȡֵ·¶Î§£»
£¨2£©µ±a¡Ü1ʱ£¬f£¨x£©ÔÚ[-1£¬1]ÉϵÄ×î´óֵΪM£¬×îСֵΪm£¬ÈôM-m=4£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸