精英家教网 > 高中数学 > 题目详情
14.已知f(x)是二次函数,且f(2+x)是偶函数,又f(0)=3,f(2)=1,f(x)在[0,m]上的最大值为3,最小值为1,则m的取值范围是[2,4].

分析 由已知中f(2+x)是偶函数,可得:故f(x)的图象关于直线x=2对称,结合f(0)=3可得:f(4)=3,进而得到m的取值范围.

解答 解:∵f(2+x)是偶函数,
故f(x)的图象关于直线x=2对称,
又由f(0)=3,f(2)=1,
可得:f(4)=3,
若f(x)在[0,m]上的最大值为3,最小值为1,
则m∈[2,4],
故答案为:[2,4].

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=ln$\frac{ex}{e-x}$,若f($\frac{e}{2015}$)+f($\frac{2e}{2015}$)+…f($\frac{2014e}{2015}$)=$\frac{1007}{3}$(a+b),则a2+b2的最小值为(  )
A.8B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式|x-1|+|x+3|>a,对一切实数x都成立,则实 数a的取值范围是(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,sin2$\frac{A}{2}$=$\frac{c-b}{2c}$(a,b,c分别为角A,B,C的对应边),则△ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x2+ix+6=5x+2i
(文科)当x∈R时,x的值为2
(理科)当x∉R时,求x的值为3-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.角α的终边上一点的坐标为(1,-1),则满足条件的最小正角α是$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列几个命题,其中正确的有(1)(2)(3)(4)(5)(请把正确命题的所有序号都写上!)
(1)函数$y=\frac{{\sqrt{x+1}}}{x}$的定义域为{x|x≥-1但x≠0};
(2)已知f(x)=ax2+bx是定义在[b-1,2b]上的奇函数,那么$a+b=\frac{1}{3}$;
(3)已知f(x)=ax5+bx3+cx-8,且f(2013)=2016,则f(-2013)=-2032;
(4)函数y=|x2-3x+2|的图象和直线y=m有两个公共点,则m的范围是$\left\{0\right\}∪(\frac{1}{4},+∞)$;
(5)定义在R上的函数f(x)的值域是[-1,2],则函数f(x+2013)的值域仍为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在空间四边形ABCD中,AC=BD,顺次连接它的各边中点E、F、G、H,得四边形EFGH的形状是菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{{4}^{x}}{2+{4}^{x}}$,
(1)证明:函数f(x)是R上的增函数;
(2)证明:对任意的实数t,都有f(t)+f(1-t)=1;
(3)求值:$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2013}{2015})+f(\frac{2014}{2015})$.

查看答案和解析>>

同步练习册答案