精英家教网 > 高中数学 > 题目详情
已知f(x)=ax-lnx,x∈(0,e],g(x)=
x2
2
+1
其中e是自然常数,a∈R.
(1)讨论a=1时f(x)的单调性,极值;
(2)求证:在(1)的条件下,f(x+1)<g(x);
(3)是否存在实数a,使得f(x)的最小值是3,若存在,求出a的值,若不存在说明理由.
考点:导数在最大值、最小值问题中的应用,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)在定义域内解不等式f′(x)>0,f′(x)<0可得单调性,由极值定义可求得极值;
(2)f(x+1)<g(x),化为
x2
2
-x+ln(x+1)>0,令h(x)=
x2
2
-x+ln(x+1),利用导数可判断h(x)的单调性,由单调性可得结论;
(3)f′(x)=a-
1
x
=
ax-1
x
,由此进行分类讨论能推导出存在a=e2
解答: 解:(1)a=1时,f′(x)=1-
1
x

∵x∈(0,e],
由f′(x)=1-
1
x
>0,得1<x≤e,
∴f(x)在(1,e]是单调递增.
由f′(x)=1-
1
x
<0,得0<x<1.
∴f(x)在(0,1)上单调递减.
∴f(x)有极小值f(1)=1,无极大值.
证明:(2)在(1)的条件下,f(x+1)<g(x),即为x+1-ln(x+1)<
x2
2
+1
,亦即
x2
2
-x+ln(x+1)>0,
令h(x)=
x2
2
-x+ln(x+1),h′(x)=x-1+
1
x+1
=
x2
x+1
>0,
∴h(x)递增,h(x)>h(0)=0,即
x2
2
-x+ln(x+1)>0;
(3)f′(x)=a-
1
x
=
ax-1
x

①当a≤0时,f(x)在(0,e)上是减函数,
∴ae-1=3,a=
4
e
>0.
②当0<a<
1
e
时,f(x)在(0,e]上是减函数,
∴ae-1=3,a=
4
e
1
e

③当a
1
e
时,f(x)在(0,
1
a
]上是减函数,(
1
a
,e]上是增函数,
1
a
-ln
1
a
=3,解得a=e2
∴存在a=e2
点评:本题考查利用导数研究函数的单调性,求闭区间上函数的最值,是中档题.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x
,则(  )
A、函数f(x)的定义域是R
B、函数f(x)的值域是(-∞,0)∪(0,+∞)
C、函数f(x)在其定义域内是奇函数
D、函数f(x)在其定义域内是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,且满足(a+b)(sinA-sinB)-(a-c)sinC=0.
(1)求角B的大小;
(2)若cos2
A
2
=
1
2
+
5
10
,求tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,弦CD与AB垂直,并与AB相交于点E,点F为弦CD上异于点E的任意一点,连接BF、AF并延长交⊙O于点M、N.
(1)求证:B、E、F、N四点共圆;
(2)求证:AC2+BF•BM=AB2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(3,0),与y轴交于C点,且OC=3OA.
(1)求抛物线的函数解析式;
(2)若点P(m,n)是直线BC上方的抛物线一点,过P作PN∥OC交BC于N,设PN=h,求h关于m的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

本次段考复习课中老师出了一道概率题,由甲、乙、丙三人独自完成,它们能解出这道题的概率分别为
1
5
1
4
1
3
,且他们是否解出互不影响.
(1)求恰有二人解出这道题的概率.
(2)“此题已解出”和“未能解出”的概率哪个大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,若a=
5
,b=3,
5
sinC=2sinA,求sin(A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),向量
b
=(
3
,-1),则|2
a
-
b
|的最大值与最小值的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
m+n-2 x
1+2 x
(其中m>0,n>0)是奇函数,则代数式
1
m
+
1
n
的最小值为
 

查看答案和解析>>

同步练习册答案