精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(a+b)(sinA-sinB)-(a-c)sinC=0.
(1)求角B的大小;
(2)若cos2
A
2
=
1
2
+
5
10
,求tanC的值.
考点:余弦定理,两角和与差的正切函数,正弦定理
专题:解三角形
分析:(1)△ABC中,由条件利用正弦定理可得 a2+c2-b2=a,求得cosB=
a2+c2-b2
2ac
的值,即可求得B的值.
(2)由条件利用二倍角公式求得cosA=2cos2A-1的值,可得 sinA和tanA的值,再根据tanC=-tan(A+B),利用两角和的正切公式计算求得结果.
解答: 解:(1)△ABC中,由(a+b)(sinA-sinB)-(a-c)sinC=0,利用正弦定理可得
(a+b)(a-b)-(a-c)c=0,即 a2+c2-b2=a,
∴cosB=
a2+c2-b2
2ac
=
1
2
,∴B=
π
3

(2)∵cos2
A
2
=
1
2
+
5
10
,∴cosA=2cos2A-1=
5
5
,∴sinA=
2
5
5

∴tanA=
sinA
cosA
=2.
∴tanC=-tan(A+B)=-tan(
π
3
+A)=-
tan
π
3
+tanA
1-tan
π
3
tanA
=
3
+2
1-2
3
=
8+5
3
11
点评:本题主要考查正弦定理、余弦定理、二倍角公式、两角和的正切公式、诱导公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A={x|x2>1},B={x|x+a≥0},若∁UA⊆B,则实数a的取值范围是(  )
A、[-1,+∞)
B、[1,+∞)
C、(-∞,1]
D、(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图某综艺节目现场设有A、B、C、D四个观众席,现有由3中不同颜色与2种不同款式组成的6中马甲安排给现场观众,要求每个观众席上的马甲相同,相邻观众席上的马甲的颜色与款式都不相同,则不同的安排方法种数为(  )
A、72B、96C、36D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,角A、B、C的对边分别为a、b、c,已知asinB=3csinA,c=2,且c,a-1,b+2依次成等比数列.
(1)求a的大小;
(2)求cos(A+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
-
1
2x+1

(1)证明函数f(x)是奇函数;
(2)证明函数f(x)在(-∞,+∞)内是增函数;
(3)求函数f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax2-
1
x
(a∈R).
(Ⅰ)a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对定义域内的任意实数x1,x2(x1≠x2),都有
f(x2)-f(x1)
x2-x1
>5,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,点2a5=a10,且S5=120.求an和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-lnx,x∈(0,e],g(x)=
x2
2
+1
其中e是自然常数,a∈R.
(1)讨论a=1时f(x)的单调性,极值;
(2)求证:在(1)的条件下,f(x+1)<g(x);
(3)是否存在实数a,使得f(x)的最小值是3,若存在,求出a的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ),(A,ω,φ为常数,A>0,ω>0)在闭区间[0,
3
]上的图象如图所示,则ω=
 

查看答案和解析>>

同步练习册答案