精英家教网 > 高中数学 > 题目详情
13.已知a=0.42,b=20.4,c=log0.42,则a,b,c的大小关系为c<a<b.(用“<”连结)

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=0.42∈(0,1),b=20.4>1,c=log0.42<0,
则c<a<b.
故答案为:c<a<b.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设集合M={x|x>1},P={x|x2-6x+9=0},则下列关系中正确的是(  )
A.M=PB.P?MC.M?PD.M∪P=R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程(a-1)x2+(2-a)y2=(a-1)(2-a)中,当1<a<2时,它表示(  )
A.椭圆或圆B.双曲线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.幂函数f(x)的图象过点$({2,\sqrt{2}})$,则$f({\frac{1}{2}})$=(  )
A.$\sqrt{2}$B.4C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若3a=5b=A(ab≠0),且$\frac{1}{a}$+$\frac{1}{b}$=2,则A=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{{x^2}+a}}{x}$(常数a∈R).
(1)判断函数f(x)的奇偶性,并证明;
(2)若f(1)=2,证明函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求f(x)的单调递减区间   
(2)求f(x)在$x∈[0,\frac{π}{2}]$时的值域
(3)叙述由$y=\sqrt{2}sinx$到y=f(x)的图象的变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=log94,b=log64,c=$\frac{1}{2}$,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={1,2,3},B={x|-1<x≤2,x∈N},则A∪B={0,1,2,3}.

查看答案和解析>>

同步练习册答案