精英家教网 > 高中数学 > 题目详情
19.将“存在一个实数x,使2x2+1≥0”用符号简记为:?x∈R,2x2+1≥0.

分析 利用特称命题的记法即可得出.

解答 解:“存在一个实数x,使2x2+1≥0”用符号简记为:?x∈R,2x2+1≥0.
故答案为:?x∈R,2x2+1≥0.

点评 本题考查了特称命题的记法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t+1\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为$ρ=2\sqrt{2}cos({θ-\frac{π}{4}})$.
(1)设点P的极坐标为$(4,\frac{π}{3})$,求点P到直线l的距离;
(2)直线l与曲线C交于A,B两点,求AB的中点到点M(0,1)的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.α为实数,则“α=2kπ+$\frac{π}{4}$(k∈Z)”是“tanα=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+1|-2|x-1|.
(1)求不等式f(x)≥1的解集;
(2)求函数f(x)的图象与x轴围成的三角形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{33}}{7}$,且(4,0)在椭圆C上,圆M:x2+y2=r2与直线l:y=8x的一个交点的横坐标为1.
(1)求椭圆C的方程与圆M的方程;
(2)已知A(m,n)为圆M上的任意一点,过点A作椭圆C的两条切线l1,l2.试探究直线l1,l2的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从某班5名男生和4名女生中选4人代表班级参加辩论赛,问
(1)4人中至少有一名男生的选法有多少种?
(2)若男生甲和女生乙只能有一人参赛且必然有一人参赛,有多少种选法?
(3)辩论队员分为一辩,二辩,三辩,四辩,该班有多少种出赛阵容?
(4)若男生甲和女生乙两人分担当一辩或四辩,则该班有多少种出赛阵容?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.偶函数y=f(x)在[3,5]上是增函数,且有最大值7,则在[-5,-3]上是减函数,且有最大值7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线y2=4$\sqrt{2}$x的准线恰好是双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}$=1的左准线,则双曲线的渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)存在反函数y=f-1(x),若函数$y=f(x)-\frac{1}{x}$的图象经过点(1,2),则函数$y=\frac{1}{x}+{f^{-1}}(x)$的图象必过点$(3,\frac{4}{3})$.

查看答案和解析>>

同步练习册答案