精英家教网 > 高中数学 > 题目详情
10.定义运算(a,b)※(c,d)=ac-bd,则符合条件(z,1+2i)※(1+i,1-i)=0的复数z所对应的点在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

分析 由新定义列式,利用复数代数形式的乘除运算化简z,求出z的坐标得答案.

解答 解:由新定义(a,b)※(c,d)=ac-bd,得
(z,1+2i)※(1+i,1-i)=z(1+i)-(1+2i)(1-i)=0,
即z(1+i)=(1+2i)(1-i)=3+i,
∴$z=\frac{3+i}{1+i}=\frac{(3+i)(1-i)}{(1+i)(1-i)}=\frac{4-2i}{2}=2-i$.
∴复数z所对应的点的坐标为(2,-1),在第四象限.
故选:A.

点评 本题考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为(  )
A.24πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)的图象如图所示,下列数值排序正确的是(  )
A.0<f(3)-f(2)<f′(2)<f′(3)B.0<f′(2)<f′(3)<f(3)-f(2)C.0<f′(3)<f(3)-f(2)<f′(2)D.0<f′(3)<f′(2)<f(3)-f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i是虚数单位,复数z=$\frac{2i}{1+i}$,则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次联考数学测试中,学生成绩ξ服从正态分布(100,σ2),(σ>0),若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为(  )
A.0.05B.0.1C.0.15D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2ex,函数g(x)=k(x+1),若函数f(x)图象恒在函数g(x)图象的上方(没有交点),则实数的取值范围是(  )
A.k>2B.k≥2C.0≤k≤2D.0≤k<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$\frac{3+i}{1-3i}$=(  )
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点$A(3,\sqrt{3})$,O为坐标原点,点P(x,y)满足$\left\{{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}}\right.$,则满足条件点P所形成的平面区域的面积为$\sqrt{3}$,$\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|\overrightarrow{OA}|}}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l1:ax+2y+6=0,l2:x+(a-1)y+a2-1=0,若l1⊥l2,则a=$\frac{2}{3}$,若l1∥l2,则a=-1,此时l1和l2之间的距离为$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案