精英家教网 > 高中数学 > 题目详情
16.$\frac{2cos80°+cos160°}{cos70°}$的值是(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\sqrt{3}$D.-$\sqrt{2}$

分析 利用两角和公式吧cos80°转换成cos(60°+20°),cos160°转换成-cos20°,cos70°转换成sin20°,化简整理即可.

解答 解:$\frac{2cos80°+cos160°}{cos70°}$=$\frac{2cos(60°+20°)-cos20°}{sin20°}$=$\frac{cos20°-\sqrt{3}sin20°-cos20°}{sin20°}$=$\frac{-\sqrt{3}sin20°}{sin20°}$=$-\sqrt{3}$,
故选:C

点评 本题主要考查了三角函数恒等变换的应用.解题的过程中桥面运用cos(60°+20°)利用两角和公式的余弦函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凹函数”,则实数m的取值范围是(  )
A.(-∞,$\frac{23}{9}$]B.(-∞,-3)C.(-∞,-3]D.(-3,$\frac{23}{9}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若P=$\sqrt{a+2}+\sqrt{a+5}$,Q=$\sqrt{a+3}$+$\sqrt{a+4}$(a≥0),则P,Q的大小关系为(  )
A.P>QB.P<QC.P=QD.由a的取值确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知R为实数集,C为复数集,给出下列类比推理命题,正确的结论是(  )
A.“若a、b∈R,则a+b=b+a”类比推出“若a、b∈C,则a+b=b+a”
B.“若(a-b)2+(b-c)2=0,其中a、b、c∈R,则a=b=c”类比推出“若(a-b)2+(b-c)2=0,其中a、b、c∈C,则a=b=c”
C.由“(a•b)c=a(b•c) 其中a、b、c∈R”类比推出“$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=(\overrightarrow a•\overrightarrow b)\overrightarrow{•c}$”
D.“若ab=ac,其中a、b、c∈R,则b=c”类比推出“若$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=(\overrightarrow a•\overrightarrow b)\overrightarrow{•c}$,且$\overrightarrow a≠\overrightarrow 0$,则$\overrightarrow b=\overrightarrow c$”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.
(1)根据三视图,画出该几何体的直观图;
(2)在直观图中,①证明PD∥面AGC;②求此几何体的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-1|.
(1)求不等式f(x)<x+1的解集;
(2)若a+b=1,f(x)-f(x+1)>$\frac{b^2}{a}+\frac{a^2}{b}$对任意正实数a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“?x∈R,|x-2|>3”的否定是:?x0∈R,|x0-2|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,已知∠B=30°,△ABC的面积为$\frac{3}{2}$,则AC边上的中线BD的最小值$\frac{3+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥x\\ 4x+3y≤12\end{array}\right.$,则$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.[1,5]B.[2,6]C.[2,10]D.[3,11]

查看答案和解析>>

同步练习册答案