| A. | 3(2-$\sqrt{3}$)π | B. | 4(2-$\sqrt{3}$)π | C. | 3(2+$\sqrt{3}$)π | D. | 4(2+$\sqrt{3}$)π |
分析 设出球O1与球O2的半径,求出面积之和,利用相切关系得到半径与正方体的对角线的关系,通过基本不等式,从而得出面积的最小值.
解答 解:∵AO1=$\sqrt{3}$R1,C1O2=$\sqrt{3}$R2,O1O2=R1+R2,
∴($\sqrt{3}$+1)(R1+R2)=$\sqrt{3}$,
R1+R2=$\frac{{\sqrt{3}}}{{\sqrt{3}+1}}$,球O1和O2的表面积之和为4π(R12+R22)≥4π•2($\frac{{{R_1}+{R_2}}}{2}$)2
=2π(R1+R2)2=3(2-$\sqrt{3}$)π.
故选:A.
点评 本题是中档题,考查球与正方体相切关系的应用,考查基本不等式求解最值问题,考查计算能力,空间想象能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-3<x≤-1} | B. | {x|-3≤x<-1} | C. | {x|-3≤x≤-1} | D. | {x|-3<x<-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$+1 | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com