分析 由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,即可得出.
解答 解:由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),
令x=0,可得1=a0.
令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
故答案为:-1.
点评 本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{5}$ | B. | $\frac{3\sqrt{3}}{5}$ | C. | $\frac{\sqrt{3}}{19}$ | D. | $\frac{\sqrt{3}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 有明显拖延症 | 无明显拖延症 | 合计 | |
| 男 | 35 | 25 | 60 |
| 女 | 30 | 10 | 40 |
| 总计 | 65 | 35 | 100 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 12 | C. | 24 | D. | 36 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com