精英家教网 > 高中数学 > 题目详情
8.若(1-2x)2017=a0+a1x+…a2017x2017(x∈R),则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值为-1.

分析 由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,即可得出.

解答 解:由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),
令x=0,可得1=a0
令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
故答案为:-1.

点评 本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若tan(α+80°)=4sin420°,则tan(α+20°)的值为(  )
A.-$\frac{\sqrt{3}}{5}$B.$\frac{3\sqrt{3}}{5}$C.$\frac{\sqrt{3}}{19}$D.$\frac{\sqrt{3}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列4个命题:
①直线y=kx+1一定与圆x2+y2=2相交;
②命题“?x0∈R,f(x0)>0”的否定为“?x∈R,f(x)<0”;
③可用二分法求所有函数零点的近似值;
④相关系数r的绝对值越小,回归直线模型拟合效果越好.
其中正确命题的序号为①(写出所有正确命题序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)+3f(-x)=log2(x+3),则f(1)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某三棱锥的三视图如图所示,则该几何体的体积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:
有明显拖延症无明显拖延症合计
352560
301040
总计6535100
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X,试求随机变量X的分布列和数学期望;
(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d 
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正项等差数列{an}的前n项和为Sn,S10=40,则a3•a8的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.清代著名数学家梅彀成在他的《增删算法统宗》中有这样一歌谣:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”其译文为:“远远望见7层高的古塔,每层塔点着的灯数,下层比上层成倍地增加,一共有381盏,请问塔尖几盏灯?”则按此塔各层灯盏的设置规律,从上往下数第4层的灯盏数应为(  )
A.3B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,三边长分别为7,$4\sqrt{3}$,$\sqrt{13}$,则三角形最小角的大小为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案