精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点是F1(0,-1)、F2(0,1),P是椭圆上一点,并且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的方程是
 
考点:椭圆的简单性质,椭圆的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据|F1F2|是|PF1|与|PF2|的等差中项,可得2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判断焦点所在坐标轴,就可得到椭圆方程.
解答: 解:∵|F1F2|是|PF1|与|PF2|的等差中项,
∴2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(0,-1),F2(0,1),∴c=1,
∴a=2,b2=a2-c2=3,
又∵椭圆的焦点在y轴上,
∴椭圆方程为
x2
3
+
y2
4
=1

故答案为:
x2
3
+
y2
4
=1
点评:本题主要考查了应用椭圆的定义以及等差中项的概念求椭圆方程,关键是求a,b的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,点B满足
BF1
=
F1F2
AB
AF2
=0.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)P是过A、B、F2三的圆上的点,若△AF1F2的面积为
3
,求P到直线l:x-
3
y-3=0距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设条件 p:A={x|x2-3x-4<0},条件q:B={x|-a≤x≤a+1},若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2+(a-1)x+a2>0的解集为R.
命题q:方程
x2
a2+a
+
y2
a2-1
=1表示双曲线.
若命题“p∨q”为真命题,命题“p∧q”为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
16
+
y2
4
=1内一点M(2,1)的一条直线与椭圆交于A,B两点,如果弦AB被M点平分,那么这样的直线是否存在?若存在,求其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M(x,y)到直线l:x=4的距离是它到点M(1,0)的距离的2倍.求动点M的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+ax-4a<0”为假命题,是“-16≤a≤0”的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足
a
=(4,3),2
a
+
b
=(3,18),则向量
a
b
夹角的余弦值为
 

查看答案和解析>>

同步练习册答案