精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,平面ABCDM是线段AB的中点.

1)求证:平面PAB

2)已知点N是线段PB的中点,试判断直线CN与平面PAD的位置关系,并证明你的判断.

【答案】1)证明见解析(2平面PAD;证明见解析

【解析】

1)证明,即得平面PAB;(2)判断平面PAD取线段PA的中点F,连结FNDF,证明平面PAD即得证.

1)∵

是等边三角形,M是线段AB的中点

又∵平面ABCD平面ABCD

又∵平面PAB

平面PAB.

2)判断平面PAD.

证明:取线段PA的中点F,连结FNDF

M是线段AB的中点,

CDPN是平行四边形,

又∵平面PAD平面PAD

平面PAD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数fx)=sinx的图象向右平移个单位,横坐标缩小至原来的倍(纵坐标不变)得到函数y=gx)的图象.

(1)求函数gx)的解析式;

(2)若关于x的方程2gx)-m=0在x∈[0,]时有两个不同解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.

(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;

(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}(n=1,2,3)满足an+1=2﹣|an|,若a1>0,则a1_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

)(i)请根据图示,将2×2列联表补充完整;


优分

非优分

总计

男生




女生




总计



50

ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为该学科成绩与性别有关

)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|3x﹣2|﹣|x﹣3|.

Ⅰ)求不等式fx)≥4的解集;

Ⅱ)求函数gx)=fx)+f(﹣x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】辽宁号航母纪念章从2012105日起开始上市,通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x

8

10

32

市场价y

82

60

82

1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③.

2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的底面是菱形,EMN分别是的中点.

1)证明:平面

2)求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD中,M是以CD为直径的半圆周上的任意一点(与CD均不重合),且平面平面ABCD.

1)求证:平面平面BCM

2)当四棱锥的体积最大时,求AMCD所成的角.

查看答案和解析>>

同步练习册答案