分析 利用诱导公式,同角三角函数基本关系式化简证明左边=$\frac{tanθ+1}{tanθ-1}$=右边,即可得证.
解答 证明:∵左边=$\frac{2sin(θ-\frac{3π}{2})cos(θ+\frac{π}{2})-1}{1-2co{s}^{2}(θ+\frac{3}{2}π)}$=$\frac{-2cosθsinθ-1}{cos2θ}$=-$\frac{sin2θ+1}{cos2θ}$=-$\frac{\frac{2tanθ}{1+ta{n}^{2}θ}+1}{\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}}$=$\frac{(1+tanθ)^{2}}{(tanθ+1)(tanθ-1)}$=$\frac{tanθ+1}{tanθ-1}$,
右边=$\frac{tan(9π+θ)+1}{tan(π+θ)-1}$=$\frac{tanθ+1}{tanθ-1}$.
∴左边=右边,得证.
点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数的化简求值中的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三理上适应性考试一数学试卷(解析版) 题型:选择题
已知数列
的前
项和为
,且满足
,若
,则
的前2017项的积为( )
A.1 B.2 C.-6 D.-586
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com