精英家教网 > 高中数学 > 题目详情
7.若f(x+y)=f(x)•f(y),且f(1)=1,求值$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$.

分析 利用已知条件求出$\frac{f(n+1)}{f(n)}$的值,然后求解表达式的值.

解答 解:f(x+y)=f(x)•f(y),且f(1)=1,
令x=n,y=1,
可得$\frac{f(n+1)}{f(n)}=f(1)=1$.
$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$=2014×1=2014.

点评 本题考查函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,则f(2)+f($\frac{1}{2}$)=(  )
A.0B.1C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若函数f(x)的定义域为[0,1],求f(1-2x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)若f(x)=(m-1)x2+mx+3(x∈R)是偶函数,求f(x)的单调递增区间.
  (2)若f(x)=(m2+2m-3)x2+mx+m+3(x∈R)是奇函数,求m值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知U=R为全集,M={x|ax+b≠0,a,b∈R},N={x|cx+d≠0,c,d∈R},则集合:{x|(ax+b)(cx+d)=0}=(∁RM)∪(∁RN).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设α是第一象限角,β是第二象限角,且sinα,cosβ是二次方程25x2-16=0的两个根
(1)求sin2α的值.
(2)求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式中,①-4∈Z;②{(a,b)}={(b,a)};③∅∈{0};④{1}∈{1,2,3};⑤0={0};⑥{1,2}?{1,2,3}.正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某矿山车队有4辆载重为10t的甲型卡车和7辆载重为6t的乙型卡车,有9名驾驶员.此车队每天至少要运360t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,如果设每天派出甲型卡车x辆,乙型卡车y辆,则满足上述所有不等式关系的不等式组为$\left\{\begin{array}{l}{x+y≤9}\\{5x+4y≥30}\\{0≤x≤4}\\{0≤y≤7}\\{x、y∈N}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用正确的符号(∈,∉,=,?,?)填空:
(1)0∉N+
(2){0}?N;
(3)∅?{a};
(4)$\sqrt{3}$∈∁UQ(U=R);
(5)Z?{-1,0,2}.

查看答案和解析>>

同步练习册答案