精英家教网 > 高中数学 > 题目详情
9.如图,AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在的平面,D、E分别是VA、VC的中点.
(1)若F∈BC试确定点F的位置,使VB∥平面EDF,并证明;
(2)证明:VB⊥DE.

分析 (1)点F为BC的中点时,VB∥平面EDF,利用线线平行,即可得出线面平行;
(2)利用直径对直角,得出AC⊥BC,再由直线VC⊥AC,证明AC⊥平面VBC,再由ED∥AC,得出ED⊥平面VBC,从而证明VB⊥DE.

解答 解:(1)如图所示,
当点F为BC的中点时,VB∥平面EDF,
∵F为BC的中点,∴E为VC的中点,
∴EF∥VB,
又EF?平面DEF,VB?平面DEF,
∴VB∥平面EDF;
(2)∵AB是⊙O的直径,点C是⊙O上的点,
∴AC⊥BC,
又直线VC垂直于⊙O所在的平面,
∴VC⊥AC,
又VC∩BC=C,∴AC⊥平面VBC;
又D、E分别是VA、VC的中点,
∴ED∥AC,
∴ED⊥平面VBC,
又VB?平面VBC,
∴VB⊥DE.

点评 本题考查了空间中的平行与垂直共线的应用问题,也考查了逻辑思维与空间想象能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知命题“p:?x∈[0,1],ex+a≥0”,命题“q:?x∈R,x2+x+a=0”,若命题“p∧q”为真命题,则实数a的取值范围为(-∞,-e].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=\sqrt{2x-4}$的单调递增区间是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合P={0,1},Q={0},则(  )
A.Q=∅B.P=QC.P?QD.P⊆Q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的偶函数,且在(-∞,0)上单调递增,a=f(0.80.8),b=f(0.81.6),c=f(1.60.8),则a,b,c的大小关系是(  )
A.c<a<bB.a<c<bC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某次运动会甲、乙两名射击运动员的成绩如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1
(1)用茎叶图表示甲乙两人的成绩;
(2)根据茎叶图分析甲乙两人的成绩哪个较好.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足a1=0,an+1-an=10-3n(n∈N*),则an的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=|2x-1|,c<b<a,且f(c)>f(a)>f(b),则2a+2c与2的大小关系是(  )
A.2a+2c>2B.2a+2c≥2C.2a+2c≤2D.2a+2c<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.仿照浙江卫视<<我爱记歌词>>栏目,高二(2)班搞了一个类似的活动,规则如下:参赛者从10首歌曲中随机抽取3首,由3名班上的“超级歌手”中的1名先领唱,再由参赛选手接唱,3首歌曲都必须接唱.歌词无误即算接唱成功,只要接唱2首成功就能晋级下一轮,否则被淘汰.若王昊同学能接唱其中的6首,试求:
(1)选取的3首歌曲中王吴同学能接唱的歌曲数的分布列;
(2)王吴同学能晋级的概率.

查看答案和解析>>

同步练习册答案