精英家教网 > 高中数学 > 题目详情
△ABC中,若
a
cosB
=
b
cosA
,则该三角形一定是(  )
A、等腰三角形但不是直角三角形
B、直角三角形但不是等腰三角形
C、等腰直角三角形
D、等腰三角形或直角三角形
考点:正弦定理
专题:解三角形
分析:已知等式变形后,利用正弦定理化简,再利用二倍角的正弦函数公式化简,即可确定出三角形形状.
解答: 解:由已知等式变形得:acosA=bcosB,
利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B.
∴2A=2B或2A+2B=180°,
∴A=B或A+B=90°,
则△ABC为等腰三角形或直角三角形.
故选:D.
点评:此题考查了正弦定理,以及二倍角的正弦函数公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线ρsin(θ+
π
3
)=0与曲线
x=
1
a
(t+
1
t
)
y=t-
1
t
(t为参数)无交点,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则(1-i)(2+i)=(  )
A、-3-iB、3-i
C、-3+iD、3+i

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点P(4,
3
)到圆C:ρ=4cos(θ+
π
3
)上一点距离的最小值为(  )
A、8B、10C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

把曲线C1
y=2cosθ
y=2sinθ
(θ为参数)上各点的横坐标压缩为原来的
1
4
,纵坐标压缩为原来的
3
4
,得到的曲线C2为(  )
A、12x2+4y2=1
B、4x2+
4y2
3
=1
C、x2+
y2
3
=1
D、3x2+4y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=eax-lnx(a是实常数),下列结论正确的一个是(  )
A、a=1时,f(x)有极大值,且极大值点x0∈(
1
2
,1)
B、a=2时,f(x)有极小值,且极小值点x0∈(0,
1
4
C、a=
1
2
时,f(x)有极小值,且极小值点x0∈(1,2)
D、a<0时,f(x)有极大值,且极大值点x0∈(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线Γ:
x2
a2
-
y2
b2
=1(a,b>0),F1是双曲线Γ的左焦点,直线y=x交双曲线Γ于P、Q两点,点M在双曲线上且满足MF1⊥x轴,若△MPQ是以点M为顶点的等腰三角形,则双曲线Γ的离心率为(  )
A、
1+
3
2
B、1+
3
C、
1+
5
2
D、1+
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
cosx
x
(x>0),g(x)=sinx-ax(x>0).
(Ⅰ)函数f(x)=
cosx
x
(x>0)的零点从小到大排列,记为数列{xn},求{xn}的前n项和Sn
(Ⅱ)若f(x)≥g(x)在x∈(0,+∞)上恒成立,求实数a的取值范围;
(Ⅲ)设点P是函数φ(x)与ω(x)图象的交点,若直线l同时与函数φ(x),ω(x)的图象相切于P点,且函数φ(x),ω(x)的图象位于直线l的两侧,则称直线l为函数φ(x),ω(x)的分切线.
探究:是否存在实数a,使得函数f(x)与g(x)存在分切线?若存在,求出实数a的值,并写出分切线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工人在一天内加工零件产生的次品数用ξ表示,椐统计,随机变量ξ的概率分布如下:
ξ0123
p0.10.13aa
(1)求a的值和ξ的数学期望;
(2)假设两天内产生的次品数互不影响,求该工人两天内产生的次品数共2个的概率.

查看答案和解析>>

同步练习册答案