精英家教网 > 高中数学 > 题目详情
2.利用正切函数图象解不等式.
(1)tanx≥-1;
(2)tan2x≤-1;
(3)tanx≥3.

分析 由条件利用正切函数的图象特征,求得x的范围.

解答 解:(1)由tanx≥-1,可得kπ-$\frac{π}{4}$≤x<kπ+$\frac{π}{2}$,故该不等式的解集为{x|kπ-$\frac{π}{4}$≤x<kπ+$\frac{π}{2}$,k∈Z}.
(2)tan2x≤-1可得kπ-$\frac{π}{2}$<2x≤kπ-$\frac{π}{4}$,∴$\frac{kπ}{2}$-$\frac{π}{4}$<x≤$\frac{kπ}{2}$-$\frac{π}{8}$,
故该不等式的解集为{x|$\frac{π}{4}$-$\frac{π}{2}$<x≤$\frac{kπ}{2}$-$\frac{π}{8}$,k∈Z}.
(3)tanx≥3,可得kπ+arctan3≤x<kπ+$\frac{π}{2}$,
故该不等式的解集为{x|kπ+arctan3≤x<kπ+$\frac{π}{2}$,k∈Z}.

点评 本题主要考查正切函数的图象特征,三角不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知直线a,b,平面α,则以下三个命题:
①若a∥b,b?α,则a∥α;
②若a∥b,b∥α,则a∥α;
③a∥α,b∥α,则a∥b;
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简:
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x);
(5)sin347°cos148°+sin77°cos58°;
(6)sin164°sin224°+sin254°sin314°;
(7)sin(α+β)cos(γ-β)-cos(β+α)cos(β-γ);
(8)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(9)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$;
(10)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=1-2a-2acosx-2sin2x(a∈R,x∈R)的最小值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数ft(x)=(x-t)2-t,t∈R,设a<b,f(x)=$\left\{\begin{array}{l}{{f}_{a}(x),{f}_{a}(x)<{f}_{b}(x)}\\{{f}_{b}(x),{f}_{a}(x)≥{f}_{b}(x)}\end{array}\right.$,若函数y=f(x)+x+a-b有四个零点,则b-a的取值范围为$(2+\sqrt{5},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.判断满足下列条件的三角形形状.
(1)acosA=bcosB;
(2)cos(2B+C)+2sinAsinB=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,圆O:x2+y2=1,其中M,N是椭圆C上的两个动点,P是圆O上一个动点.
(1)当直线MN过椭圆的左焦点且与圆O相切时,求直线MN的方程;
(2)当|MN|=2$\sqrt{2}$时,求点P到直线MN距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.与α终边关于原点对称的角的集合{β|β=k•360°+180°+α,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$,g(x)=ax-a.
(1)若函数g(x)的图象与函数f(x)的图象相切,求a的值及切点的坐标;
(2)若m,n∈(0,1],且m>n,求证:$\root{mn}{\frac{{m}^{n}}{{n}^{m}}}$>em-n

查看答案和解析>>

同步练习册答案