精英家教网 > 高中数学 > 题目详情
5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A,B,C成等差,且a,b,c成等比,则三角形一定是(  )
A.等边三角形B.直角三角形C.等腰直角三角形D.钝角三角形

分析 由A,B,C成等差,结合三角形内角和定理可求得B=60°,又a,b,c成等比,可得b2=ac,结合余弦定理,平方差公式可求a=c,从而可得三角形一定是等边三角形.

解答 解:在△ABC中,∵A,B,C成等差,
∴2B=A+C,
∴由A+B+C=180°,可得B=60°,
又∵a,b,c成等比,
∴b2=ac,
∵由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac,
∴ac=a2+c2-ac,即:(a-c)2=0,解得a=c,
∴三角形一定是等边三角形.
故选:A.

点评 本题主要考查了等差数列的性质、等比中项、正、余弦定理在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(Ⅰ)求直方图中x的值;
(Ⅱ)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?
(Ⅲ)求月平均用电量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(α)=$\frac{{{{sin}^2}(π-α)cos(2π-α)tan(-π+α)}}{sin(-π+α)tan(-α+3π)}$
(1)化简f(α);
(2)若f(α)=$\frac{1}{8}$,且0<α<$\frac{π}{2}$,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数在(0,+∞)上是增函数的是(  )
A.y=ln(x-2)B.y=-$\sqrt{x}$C.y=x-x-1D.y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{3x+7}{x+2}$,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两所学校高二年级分别有1 200人,1 000人,为了了解两所学校全体高二年级学生在该地区四校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
频数3481515x32
乙校:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
频数12891010y3
(1)计算x,y的值;
(2)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校的数学成绩有差异.
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
甲校乙校总计
优秀
非优秀
总计

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在正方体ABCD-A1B1C1D1中,P,Q,E,F分别是AB,AD,B1C1,C1D1的中点,则正方体过P,Q,E,F的截面图形的形状是(  )
A.正方形B.平行四边形C.正五边形D.正六边形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线2x-y+3=0在x轴上的截距为(  )
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{2}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任一点P与椭圆上两定点A(x0,y0),B(-x0,-y0)的连线的斜率之积是-$\frac{{b}^{2}}{{a}^{2}}$.

查看答案和解析>>

同步练习册答案