精英家教网 > 高中数学 > 题目详情
12.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α的值.

分析 由已知利用同角三角函数基本关系式可求sin(α+β),sin(α-β)的值,利用两角和的余弦函数公式即可计算求值得解.

解答 解:∵cos(α+β)=$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),
可得:sin(α+β)=-$\sqrt{1-co{s}^{2}(α+β)}$=-$\frac{3}{5}$.
cos(α-β)=-$\frac{4}{5}$,α-β∈($\frac{3π}{4}$,π),
可得:sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{3}{5}$.
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)
=$\frac{4}{5}$×(-$\frac{4}{5}$)-(-$\frac{3}{5}$)×$\frac{3}{5}$=-$\frac{7}{25}$.

点评 本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知正方形的中心为直线x-y+1=0和2x+y+2=0的交点,一条边所在的直线方程是x+3y-5=0,求其他三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y2=4x的焦点为F,直线L:x=ty+1与C交于P(x1,y1),Q(x1,y2)两点,若$\overrightarrow{PF}$=λ$\overrightarrow{FQ}$.
(1)若λ=1,求|PQ|的长;
(2)若λ∈[$\frac{1}{2}$,2],求|PQ|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为1的正方体ABCD-A1B1C1D1中,M是A1D1的中点,点P在侧面 BCC1B1上运动.现有下列命题:
①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线;
②若点P到点A的距离为$\frac{2\sqrt{3}}{3}$,则动点P的轨迹所在的曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线.
其中真命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数y=f(x)的定义域为R,f(x)在x=m时取得最值,又知y=g(x)为一次函数,且f(x)+g(x)=x2+x-2.
(1)求f(x)的解析式,用m表示;
(2)当x∈[-2,1]时,f(x)≥-3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若acosθ-sinθ=1,asinθ+cosθ=1,则sinθ=-$\frac{1}{2}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面四边形ABCD中,AB⊥AD,BD⊥CD,且AB=AD=DC=2,点M是BD的中点,现将平面四边形ABCD沿对角线BD折起成四面体PBCD.
(1)当平面PBD⊥平面CBD时,求证:BP⊥平面PCD;
(2)在(1)的条件下,求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某一随机变量ξ的概率分布如下,且E(ξ)=6.3,则a的值为7.
ξ4a9
P0.50.1b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我省某校要进行一次月考,一般考生必须考5 门学科,其中语、数、英、综合这四科是必考科目,另外一门在物理、化学、政治、历史、生物、地理、英语Ⅱ中选择.为节省时间,决定每天上午考两门,下午考一门学科,三天半考完.
(1)若语、数、英、综合四门学科安排在上午第一场考试,则“考试日程安排表”有多少种不同的安排方法;
(2)如果各科考试顺序不受限制,求数学、化学在同一天考的概率是多少?

查看答案和解析>>

同步练习册答案