精英家教网 > 高中数学 > 题目详情
已知向量
a
=(3,x),
b
=(8,12),且
a
b
,则实数x的值为(  )
A、-2
B、2
C、-
1
2
D、
1
2
考点:数量积判断两个平面向量的垂直关系
专题:平面向量及应用
分析:利用向量垂直的性质求解.
解答: 解:∵向量
a
=(3,x),
b
=(8,12),且
a
b

a
b
=3×8+12x=0,
解得x=-2.
故选:A.
点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左项点A的斜率为k的直线交椭圆于另一个点B,且点B在x轴上的身影恰好为右焦点F,若
1
3
<k<
4
5
,则椭圆离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-4x在点(1,-3)处的切线方程为(  )
A、x+y+2=0
B、x+y+1=0
C、2x-y+5=0
D、x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
y≤x
2x-3y≤0
x+y≤10
x-3y-a≤0
表示的平面区域是三角形,则a的取值范围是(  )
A、a≥0或-10<a≤-6
B、-10<a≤-6
C、-10<a<-6
D、a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lnx,下列结论正确的是(  )
A、f(x)没有零点
B、f(x)没有极值点
C、f(x)有极大值点
D、f(x)有极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合U为实数集R,A={x|
x+1
x-m
>0},∁UA={y|y=x 
1
3
,x∈[-1,8]},则m值是(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+5x2+3x-9,则函数f(x)的单调递增区间是(  )
A、[-
5
3
,+∞)
B、(-∞,-3]
C、[-3,-
1
3
]
D、(-∞,-3],[-
1
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=2sinx图象上所有点向右平移
π
6
个单位,然后把所得图象上所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到y=f(x)的图象,则f(x)等于(  )
A、2sin(2x-
π
6
B、2sin(
x
2
-
π
6
C、2sin(2x-
π
3
D、2sin(
x
2
+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<
1
2
,则不等式f(lg2x)<
lg2x
2
+
1
2
的解集为(  )
A、(0,
1
10
B、(0,
1
10
)∪(10.+∞)
C、(
1
10
,10)
D、(10,+∞)

查看答案和解析>>

同步练习册答案