精英家教网 > 高中数学 > 题目详情
如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中点.
(1)求证:平面BED⊥平面SAB;
(2)求平面BED与平面SBC所成二面角(锐角)的大小.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明平面BED⊥平面SAB,利用面面垂直的判定定理,证明DE⊥平面SAB即可;
(2)建立空间直角坐标系,求出平面BED与平面SBC的法向量,利用向量的夹角公式,即可求平面BED与平面SBC所成二面角(锐角)的大小.
解答: (1)证明:∵SD⊥底面ABCD,SD?平面SAD,
∴平面SAD⊥平面ABCD…(2分)
∵AB⊥AD,平面SAD∩平面ABCDAD,
∴AB⊥平面SAD,
又DE?平面SAD,
∴DE⊥AB,…(4分)
∵SD=AD,E是SA的中点,∴DE⊥SA,
∵AB∩SA=A,DE⊥AB,DE⊥SA,
∴DE⊥平面SAB,
∵DE?平面BED,
∴平面BED⊥平面SAB.…(6分)
(2)解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系D-xyz,不妨设AD=2.
则D(0,0,0),A(2,0,0),B(2,
2
,0)
C(0,
2
,0)
,S(0,0,2),E(1,0,1),
DB
=(2,
2
,0)
DE
=(1,0,1)
CB
=(2,0,0)
CS
=(0,-
2
,2)
…(8分)
m
=(x1y1z1)
是平面BED的法向量,则
m
DB
=0
m
DE
=0
,即
2x1+
2
y1=0
x1+z1=0

令x1=-1,则y1=
2
z1=1

m
=(-1,
2
,1)
是平面BED的一个法向量.
n
=(x2y2z2)
是平面SBC的法向量,则
n
CB
=0
n
CS
=0
,即
2x2=0
-
2
y2+2z2=0

解得x2=0,令y2=
2
,则z2=1,
n
=(0,
2
,1)
是平面SBC的一个法向量.…(10分)
cos?
m
n
>=
m
n
|
m
|•|
n
|
=
3
2
3
=
3
2

∴平面BED与平面SBC所成锐二面角的大小为
π
6
.…(12分)
点评:本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=AC=BC=2,则
AB
BC
=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的
中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,试
确定点M的位置,使二面角M-BQ-C大小为60°,并求出
PM
PC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+1+bx+1
ax+bx
,a>0,b>0,且a≠1,b≠1.
(1)判断函数f(x)的单调性;
(2)当a≠b时,利用(1)中的结论,证明不等式:
2
1
a
+
1
b
ab
a+b
2
a2+b2
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+a•2x
2x+1
 是奇函数.
(1)求实数a的值;
(2)判断函数f(x)在R上的单调性,并给出证明过程;
(3)若函数f(x)的图象经过点(-1,-
1
3
)
,这对任意x∈R不等式f(x2-2mx+m+1)≤
1
3
恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m∈R,在平面直角坐标系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
a
b
,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=
6
,点E是棱PB的中点.
(Ⅰ)求证:直线AD∥平面PBC;
(Ⅱ) 求直线AD与平面PBC的距离;
(Ⅲ)若AD=3,求二面角A-EC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P-BCG的体积为
8
3

(1)求二面角P-BC-D的正切值;
(2)求直线DP到平面PBG所成角的正弦值;
(3)在棱PC上是否存在一点F,使异面直线DF与GC所成的角为60°,若存在,确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(Ⅰ)求出第4组的频率,并补全频率分布直方图;
(Ⅱ)根据样本频率分布直方图估计样本的众数,中位数和平均数;
(Ⅲ)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

查看答案和解析>>

同步练习册答案