6£®2016ÄêÀïÔ¼°ÂÔË»áºÍ²Ð°Â»á¼ªÏéÎïµÄÃû×ÖÓÚ2015Äê12ÔÂ14ÈÕ½ÒÏþ£¬Á½¸ö¼ªÏéÎï·Ö±ð½ÐάÄáÐÞ˹£¨Vinicius£©ºÍÌÀÄ·£¨Tom£©£¨Èçͼ£©£¬ÒԴ˼ÍÄî°ÍÈøÅµÍßÇú·çµÄÖøÃûÒôÀÖ¼ÒViniciusde MoraesºÍTom Jobim£®Ä³É̳¡Ôڳ齱ÏäÖзÅÖÃÁ˳ýͼ°¸Í⣬ÆäËüÎÞ²î±ðµÄ8ÕÅ¿¨Æ¬£¬ÆäÖÐ2ÕÅÓ¡ÓС°Î¬ÄáÐÞ˹£¨Vinicius£©¡±Í¼°¸£¬n£¨2¡Ün¡Ü4£©ÕÅÓ¡ÓС°ÌÀÄ·£¨Tom£©¡±Í¼°¸£¬ÆäÓ࿨ƬÉÏÓ¡ÓС°2016ÄêÀïÔ¼°ÂÔ˻ᡱµÄͼ°¸£¬´Ó³é½±ÏäÖÐÈÎÒâ³éÈ¡Á½ÕÅ¿¨Æ¬£¬Á½ÕÅ¿¨Æ¬Í¼°¸ÏàͬµÄ¸ÅÂÊÊÇ$\frac{1}{4}$£®
£¨1£©ÇónµÄÖµ£»
£¨2£©¹æ¶¨Ã¿´Î´ÓÖв»·Å»ØµØ³éȡһÕÅ¿¨Æ¬£¬Èô³éÈ¡µ½Ó¡ÓС°Î¬ÄáÐÞ˹£¨Vinicius£©¡±»òÕßÓ¡ÓС°ÌÀÄ·£¨Tom£©¡±Í¼°¸µÄ¿¨Æ¬£¬Ôò½áÊø³é½±£¬ÓÃËæ»ú±äÁ¿¦Î±íʾ³é½±´ÎÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨¦Î£©£®

·ÖÎö £¨1£©ÓÉÒÑÖª£¬µÃn2-6n+9=0£¬ÓÉ´ËÄÜÇó³ön£®
£¨2£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®

½â´ð ½â£º£¨1£©¡ß8ÕÅ¿¨Æ¬£¬ÆäÖÐ2ÕÅÓ¡ÓС°Î¬ÄáÐÞ˹£¨Vinicius£©¡±Í¼°¸£¬n£¨2¡Ün¡Ü4£©ÕÅÓ¡ÓС°ÌÀÄ·£¨Tom£©¡±Í¼°¸£¬
ÆäÓ࿨ƬÉÏÓ¡ÓС°2016ÄêÀïÔ¼°ÂÔ˻ᡱµÄͼ°¸£¬´Ó³é½±ÏäÖÐÈÎÒâ³éÈ¡Á½ÕÅ¿¨Æ¬£¬Á½ÕÅ¿¨Æ¬Í¼°¸ÏàͬµÄ¸ÅÂÊÊÇ$\frac{1}{4}$£¬
¡à$\frac{{C}_{2}^{2}+{C}_{n}^{2}+{C}_{8-2-n}^{2}}{{C}_{8}^{2}}$=$\frac{1}{4}$£¬
ÕûÀí£¬µÃn2-6n+9=0£¬
½âµÃn=3£®
£¨2£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬4£¬
P£¨¦Î=1£©=$\frac{5}{8}$£¬
P£¨¦Î=2£©=$\frac{3}{8}¡Á\frac{5}{7}=\frac{15}{56}$£¬
P£¨¦Î=3£©=$\frac{3}{8}¡Á\frac{2}{7}¡Á\frac{5}{6}$=$\frac{5}{56}$£¬
P£¨¦Î=4£©=$\frac{3}{8}¡Á\frac{2}{7}¡Á\frac{1}{6}¡Á\frac{5}{5}$=$\frac{1}{56}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 1 2 3 4
 P $\frac{5}{8}$ $\frac{15}{56}$ $\frac{5}{56}$ $\frac{1}{56}$
E¦Î=$1¡Á\frac{5}{8}+2¡Á\frac{15}{56}+3¡Á\frac{5}{56}+4¡Á\frac{1}{56}$=$\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏ໥¶ÀÁ¢µÄ¸ÅÂʳ˷¨¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬Âú×ãan+12-2an+1=an2+2an£¬a1=2£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Áîbn=$\frac{n+1}{£¨n+2£©^{2}{a}_{n}^{2}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Ö¤Ã÷£º¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐTn£¼$\frac{5}{64}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª|$\overrightarrow{a}$|=4£¬|$\overrightarrow{b}$|=3£¬µ±£º
£¨1£©$\overrightarrow{a}$¡Î$\overrightarrow{b}$ʱ£¬Çó$\overrightarrow{a}•\overrightarrow{b}$£»
£¨2£©$\overrightarrow{a}$¡Í$\overrightarrow{b}$ʱ£¬Çó$\overrightarrow{a}•\overrightarrow{b}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªOÎª×ø±êÔ­µã£¬A£¬BÁ½µãµÄ×ø±ê¾ùÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x-3y+1¡Ü0}\\{x+y-3¡Ü0}\\{x-1¡Ý0}\end{array}\right.$Ôòtan¡ÏAOBµÄ×î´óÖµµÈÓÚ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª£¨1+x+x3£©n=a0+a1x+a2x2+¡­+a3nx3n£¬Çó
£¨1£©a1+a2+¡­+a3n
£¨2£©a1+2a2+3a3+¡­+3na3n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èôtan£¨$\frac{¦Ð}{4}$-¦Á£©=-$\frac{1}{3}$£¬Ôòsin£¨2¦Á+$\frac{¦Ð}{4}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{7\sqrt{2}}{10}$B£®$\frac{1}{5}$C£®$\frac{\sqrt{2}}{10}$D£®$\frac{7}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÏòÁ¿$\overrightarrow{AB}$=£¨2£¬0£©£¬$\overrightarrow{AC}$=£¨1£¬6£©£¬Ôò£¨2$\overrightarrow{AB}$+3$\overrightarrow{CA}$£©$•\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®109B£®101C£®-107D£®-109

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èôº¯Êýf£¨x£©ÔÚx=a´¦µÄµ¼ÊýΪA£¨aA¡Ù0£©£¬º¯ÊýF£¨x£©=f£¨x£©-A2x2Âú×ãF¡ä£¨a£©=0£¬ÔòA=$\frac{1}{2a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{|2x+3|£¬x¡Ê£¨-6£¬-1£©}\\{{x}^{2}£¬x¡Ê[-1£¬1]}\\{x£¬£¨x¡Ê[1£¬6]}\end{array}\right.$Ôòf£¨$\sqrt{2}$£©=$\sqrt{2}$£¬Ôòf£¨-¦Ð£©=2¦Ð-3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸