精英家教网 > 高中数学 > 题目详情
1.等差数列{an}的前n项和为Sn,满足:S3=15,a5+a9=30.
(I)求an及Sn
(Ⅱ)数列{bn}满足bn(Sn-n)=2(n∈N+),数列{bn}的前n项和为Tn,求证:Tn<2.

分析 (Ⅰ)设等差数列{an}的公差是d,根据题意和等差数列的通项公式、前n项和公式列出方程组,求出a1和d的值,代入公式求出an及Sn
(Ⅱ)由题意和(Ⅰ)求出bn,再利用裂项相消法求出数列{bn}的前n项和为Tn,即可证明Tn<2.

解答 解:(Ⅰ)设等差数列{an}的公差是d,
∵S3=15,a5+a9=30,∴$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}d=15}\\{2{a}_{1}+12d=30}\end{array}\right.$,
解得a1=3,d=2,
∴an=3+(n-1)×2=2n+1,
Sn=$\frac{n(3+2n+1)}{2}$=n2+2n;
证明:(Ⅱ)由(Ⅰ)得,bn(Sn-n)=2,则bn(n2+n)=2,
∴${b}_{n}=\frac{2}{{n}^{2}+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),
∴Tn=b1+b2+…+bn
=2[(1$-\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)]
=2(1-$\frac{1}{n+1}$)<2,
∴对于任意正整数n,有Tn<2成立.

点评 本题考查等差数列的通项公式、前n项和公式,裂项相消法求数列的前n项和,以及方程思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知tana=$\frac{1}{2}$,则sin2a=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,向边长为l0cm的正方形内随机撒1000粒芝麻,落在阴影部分的芝麻有345粒,则可估计阴影部分的面积为34.5cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球,则在前两次取出的是白球的前提下,第三次取出红球的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.想沏壶茶喝.洗烧开水的壶、灌入凉水需2分钟,洗茶壶、茶杯需2分钟,拿茶叶需1分钟,烧开水需15分钟,沏茶需1分钟.最省时的操作时间是(  )
A.17分钟B.18分钟C.19分钟D.20分钟

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x2+ax+b(a、b∈R)的两个零点为x1、x2,并且0<x1<1<x2<2,则a2+b2-6b的取值范围是(  )
A.[-1,4)B.(-1,4)C.(1,4)D.[-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=sinxcosx的周期和最大值分别是(  )
A.π,$\frac{1}{2}$B.2π,$\frac{1}{2}$C.π,2D.2π,2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-x2+2x+2a|x-a|+b,其中常数a,b∈R.
(1)若a=1,求函数f(x)的单调递增区间;
(2)若对任意实数a∈[$\frac{1}{2}$,2],不等式f(x)<0在x∈[-$\frac{1}{2}$,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足2an+1an-3an+1-an+2=0,则n∈N*,a1=$\frac{1}{2}$
(1)计算a2,a3,a4
(2)猜想数列{a4}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案