ÒÑÖªº¯Êýg£¨x£©=
1
4x+2
£¨x¡ÊR£©£®
£¨1£©Çó£ºg£¨x£©+g£¨1-x£©µÄÖµ£»
£¨2£©Çó£ºg£¨
1
m
£©+g£¨
2
m
£©+g£¨
3
m
£©+¡­+g£¨
m-1
m
£©+g£¨
m
m
£©µÄÖµ£®
£¨3£©É躯Êýf£¨x£©=-g£¨-log16x£©£¬a£¬bΪ³£ÊýÇÒ0£¼a£¼b£¬ÔÚÏÂÁÐËĸö²»µÈ¹ØÏµÖÐÑ¡³öÒ»¸öÄãÈÏΪÕýÈ·µÄ¹ØÏµÊ½£¬²¢¼ÓÒÔ˵Ã÷£®
¢Ùf£¨a£©£¼f£¨
a+b
2
£©£¼f£¨ab£©        
¢Úf£¨a£©£¼f£¨b£©£¼f£¨
ab
£©
¢Ûf£¨
ab
£©£¼f£¨
a+b
2
£©£¼f£¨a£©      
¢Üf£¨b£©£¼f£¨
a+b
2
£©£¼f£¨
ab
£©£®
¿¼µã£ºÖ¸Êýº¯Êý×ÛºÏÌâ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©´úÈë½âÎöʽÇó½â¼´¿É£»
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ½â´ð¼´¿É£»
£¨3£©°Ñf£¨x£©µÄ½âÎöʽ½â³öÀ´ÅÐ¶ÏÆäµ¥µ÷ÐÔ£¬È»ºóÅжÏÖ¤Ã÷¼´¿É£®
½â´ð£º ½â£º£¨1£©g£¨x£©+g£¨1-x£©=
1
4x+2
+
1
41-x+2
=
1
4x+2
+
4x
2(2+4x)
=
2+4x
2(2+4x)
=
1
2
£¬
£¨2£©g£¨
1
m
£©+g£¨
2
m
£©+g£¨
3
m
£©+¡­+g£¨
m-1
m
£©+g£¨
m
m
£©=[g£¨
1
m
£©+g£¨
m-1
m
£©]+[g£¨
2
m
£©+g£¨
m-2
m
£©+¡­+g£¨
m
m
£©
=
m-1
2
¡Á
1
2
+
1
4+2
=
3m-1
12
£»£¬
£¨3£©ÒòΪº¯Êýg£¨x£©=
1
4x+2
£¨x¡ÊR£©£¬º¯Êýf£¨x£©=-g£¨-log16x£©£¬
¡àf(x)=-
x
2
x
+1
(x£¾0)
Ϊ¼õº¯Êý£¬
ÓÖ0£¼a£¼b£¬
¡àb£¾
a+b
2
£¾
ab
£¬
¹Ê¢ÜÈ·£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ¸ÊýÐͺ¯ÊýµÄÐÔÖÊÒÔ¼°º¯ÊýµÄ×ÛºÏÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

cos70¡ã•cos20¡ã-sn70¡ã•sin20¡ãµÄÖµÊÇ£¨¡¡¡¡£©
A¡¢0B¡¢1
C¡¢sin50¡ãD¡¢cos50¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=-
1
3
x3
+4x-4£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[-1£¬3]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©»­³ö²»µÈʽ×é
x-4y¡Ü-4  
3x+5y¡Ü15  
x¡Ý1  
±íʾµÄÆ½ÃæÇøÓò£®
£¨2£©A={x|x2-x-6£¼0}£¬B={x|x2+2x-8£¾0}£¬ÇóA¡ÉB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Çóº¯Êýf£¨x£©=x3-3x2ÔÚÇø¼ä[-1£¬5]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx-ax2+£¨2-a£©x£®
£¨1£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Éè[ln£¨1+ax£©]¡ä=
a
1+ax
£¬[ln£¨1-ax£©]¡ä=
-a
1-ax
£¬Ö¤Ã÷£ºµ±a£¾0ÇÒ0£¼x£¼
1
a
ʱ£¬f£¨
1
a
+x£©£¾f£¨
1
a
-x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²·½³ÌΪ
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©£¬ËüµÄÒ»¸ö¶¥µãΪM£¨0£¬1£©£¬ÀëÐÄÂÊe=
6
3
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©¹ýµãM·Ö±ð×÷Ö±ÏßMA£¬MB½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÉèÁ½Ö±ÏßµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇÒk1+k2=3£®ÇóÖ¤£ºÖ±ÏßAB¹ý¶¨µã£¬²¢Çó³öÖ±ÏßABµÄбÂÊkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÑо¿Ä³ÖÖдëÊ©¶ÔÖí°×Á¡µÄ·ÀÖÎЧ¹ûÎÊÌâʱ£¬µÃµ½ÒÔÏÂÊý¾Ý£º
´æ»îÊýËÀÍöÊý     ºÏ¼Æ
  Î´²ÉȡдëÊ©     12     25    37
²ÉȡдëÊ©     10     24     34
     ºÏ¼Æ      22     49     71
ÊÔÎÊдëÊ©¶Ô·ÀÖÎÖí°×Á¡ÊÇ·ñÓÐЧ£¿
¸½±í£º
P£¨K2¡Ýk£©0.5000.4000.2500.1500.1000.0500.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©(
x
+
1
3x
)n
µÄÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýºÍΪ32£¬ÇóÕâ¸öÕ¹¿ªÊ½µÄ³£ÊýÏ
£¨2£©Èô
A
m
n
=272£¬
C
m
n
=136£¬ÎÊ(x-
1
x
)n
µÄÕ¹¿ªÊ½Öк¬xmµÄÏîÊǵڼ¸Ï

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸