精英家教网 > 高中数学 > 题目详情
4.i是虚数单位,则复数$\frac{1}{2+i}$在复平面内所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 化简复数为a+bi的形式,然后求出复数对应点,判断即可.

解答 解:复数$\frac{1}{2+i}$=$\frac{2-i}{(2+i)(2-i)}$=$\frac{2}{5}-\frac{1}{5}i$,
复数对应点的坐标($\frac{2}{5},-\frac{1}{5}$)在第四象限.
故选:D.

点评 本题考查复数的几何意义,复数代数形式的混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.△ABC中,若b=$\sqrt{3}$,c=1,∠A=30°,则a=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=2x与抛物线y2=2px(p>0)相交于原点和A点,B为抛物线上一点,OB和OA垂直,且线段AB长为5$\sqrt{13}$,则p的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-3sinα}\\{y=3cosα-2}\end{array}\right.$(α为参数,α∈R),在极坐标系中(以坐标原点O为极点,x轴正半轴为极轴),曲线C2的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a.
(1)把曲线C1和C2的方程化为直角坐标方程;
(2)若曲线C2上会有三个点到曲线C2的距离为$\frac{3}{2}$,求C2的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于函数f(x)=4sin(2x+$\frac{π}{3}$),(x∈R)有下列结论:
①y=f(x)是以π为最小正周期的周期函数;
②y=f(x)可改写为y=4cos(2x-$\frac{π}{6}$);
③y=f(x)的最大值为4;
④y=f(x)的图象关于直线x=$\frac{π}{12}$对称;
则其中正确结论的序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sinα<0,且cosα>0,则角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-$\frac{1}{2}$,B=-$\frac{3}{2}$,C=1,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.变量x与变量y有如下对应关系
x23456
y2.23.85.56.57.0
则其线性回归直线必过定点(4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow a$|=5,|$\overrightarrow b$|=6,且向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$\overrightarrow a$•$\overrightarrow b$=15.

查看答案和解析>>

同步练习册答案