精英家教网 > 高中数学 > 题目详情
2.某几何体三视图如图所示,则该几何体的体积为$\frac{16}{3}$.

分析 由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.

解答 解:由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.
∴该几何体的体积V=${2}^{3}-\frac{1}{3}×{2}^{2}×2$=$\frac{16}{3}$.
故答案为:$\frac{16}{3}$.

点评 本题考查了正方体与四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知圆锥的底面半径为2,且它的侧面展开图是一个半圆,则这个圆锥的表面积为(  )
A.B.12πC.D.10π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则在齐王的马获胜的条件下,齐王的上等马获胜的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设全集U={x∈R|x>0},函数f(x)=$\frac{1}{\sqrt{lnx-1}}$的定义域为A,则∁UA为(  )
A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=(  )
A.0.6826B.0.3413C.0.4603D.0.9207

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期12月1日12月2日12月3日12月4日12月5日
温差x(℃)101113128
发芽数y(颗)2326322616
襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$•$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线PA,PB分别与半径为1的圆O相切于点A,B,PO=2,$\overrightarrow{PM}=2λ\overrightarrow{PA}+(1-λ)\overrightarrow{PB}$.若点M在圆O的内部(不包括边界),则实数λ的取值范围是(  )
A.(-1,1)B.$(0,\frac{2}{3})$C.$(\frac{1}{3},1)$D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销量y(单位:万件)之间的关系如表:
x1234
y12284256
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合y与x的回归模型,并用相关系数加以说明;
(Ⅲ)建立y关于x的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回归方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在正三棱锥A-BCD中,AB=$\sqrt{5}$,点A到底面BCD的距离为1,E为棱BC的中点.
(1)求异面直线AE与CD所成角的大小;(结果用反三角函数值表示)
(2)求正三棱锥A-BCD的表面积.

查看答案和解析>>

同步练习册答案