11£®Ä³¹«Ë¾ÎªÁË׼ȷµØ°ÑÎÕÊг¡£¬×öºÃ²úÆ·Éú²ú¼Æ»®£¬¶Ô¹ýÈ¥ËÄÄêµÄÊý¾Ý½øÐÐÕûÀíµÃµ½Á˵ÚxÄêÓëÄêÏúÁ¿y£¨µ¥Î»£ºÍò¼þ£©Ö®¼äµÄ¹ØÏµÈç±í£º
x1234
y12284256
£¨¢ñ£©ÔÚͼÖл­³ö±íÖÐÊý¾ÝµÄÉ¢µãͼ£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©ÖеÄÉ¢µãͼÄâºÏyÓëxµÄ»Ø¹éÄ£ÐÍ£¬²¢ÓÃÏà¹ØÏµÊý¼ÓÒÔ˵Ã÷£»
£¨¢ó£©½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£¬Ô¤²âµÚ5ÄêµÄÏúÊÛÁ¿Ô¼Îª¶àÉÙ£¿£®
¸½×¢£º²Î¿¼Êý¾Ý£º$\sqrt{\sum_{i=1}^4{{{£¨{y_i}-\overline y£©}^2}}}¡Ö32.6$£¬$\sqrt{5}¡Ö2.24$£¬$\sum_{i=1}^4{{x_i}{y_i}=418}$£®
²Î¿¼¹«Ê½£ºÏà¹ØÏµÊý$r=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sqrt{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}\sum_{i=1}^n{{{£¨{y_i}-\overline y£©}^2}}}}}$£¬
»Ø¹é·½³Ì$\widehaty=\widehata+\widehatbx$ÖÐбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½·Ö±ðΪ£º$\widehatb=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$£¬$\widehata=\overline y-\widehatb\overline x$£®

·ÖÎö £¨¢ñ£©ÔÚͼÖл­³ö±íÖÐÊý¾ÝÖ±½Ó»­³öÉ¢µãͼ£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©ÖеÄÉ¢µãͼÄâºÏyÓëxµÄ»Ø¹éÄ£ÐÍ£¬¼ÆËãyÓëxµÄÏà¹ØÏµÊý½üËÆÎª0.9996£¬ËµÃ÷yÓëxµÄÏßÐÔÏà¹Ø³Ì¶ÈÏ൱£¬ËµÃ÷¿ÉÒÔÓÃÏßÐԻعéÄ£ÐÍÄâºÏyÓëxµÄ¹ØÏµ£»
£¨¢ó£©Çó³ö»Ø¹éÖ±Ïß·½³Ì£¬È»ºóÇó½âµÚ5ÄêµÄÏúÊÛÁ¿£®

½â´ð ½â£º£¨¢ñ£©×÷³öÉ¢µãͼÈçͼ£º

£¨¢ò£©ÓÉ£¨¢ñ£©É¢µãͼ¿ÉÖª£¬¸÷µã´óÖ·ֲ¼ÔÚÒ»ÌõÖ±Ï߸½½ü£¬ÓÉÌâÖÐËù¸ø±í¸ñ¼°²Î¿¼Êý¾ÝµÃ£º$\overline x=\frac{5}{2}$£¬$\overline y=\frac{69}{2}$£¬$\sum_{i=1}^4{{x_i}{y_i}=418}$£¬$\sqrt{\sum_{i=1}^4{{{£¨{y_i}-\overline y£©}^2}}}¡Ö32.6$£¬$\sum_{i=1}^4{x_i^2}=30$£¬$\sum_{i=1}^4{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©=\sum_{i=1}^4{{x_i}{y_i}}-\overline x\sum_{i=1}^4{y_i}=418-\frac{5}{2}¡Á138=73}$£¬$\sqrt{\sum_{i=1}^4{{{£¨{x_i}-\overline x£©}^2}}}=\sqrt{\sum_{i=1}^4{{x_i}^2-n{{\overline x}^2}}}=\sqrt{30-4¡Á{{£¨\frac{5}{2}£©}^2}}=\sqrt{5}¡Ö2.24$£¬$r=\frac{{\sum_{i=1}^4{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sqrt{\sum_{i=1}^4{{{£¨{x_i}-\overline x£©}^2}}\sum_{i=1}^4{{{£¨{y_i}-\overline y£©}^2}}}}}=\frac{73}{2.24¡Á32.6}¡Ö0.9996$£®
¡ßyÓëxµÄÏà¹ØÏµÊý½üËÆÎª0.9996£¬ËµÃ÷yÓëxµÄÏßÐÔÏà¹Ø³Ì¶ÈÏ൱´ó£¬
¡à¿ÉÒÔÓÃÏßÐԻعéÄ£ÐÍÄâºÏyÓëxµÄ¹ØÏµ£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª£º$\overline x=\frac{5}{2}$£¬$\overline y=\frac{69}{2}$£¬$\sum_{i=1}^4{{x_i}{y_i}=418}$£¬$\sum_{i=1}^4{x^2}=30$£¬$\sum_{i=1}^4{£¨{x_i}-\overline x}{£©^2}=5$£¬$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}=\frac{73}{5}$£¬$\widehata=\overline y-\widehatb\overline x=\frac{69}{2}-\frac{73}{5}¡Á\frac{5}{2}=-2$£¬
¹Êy¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\widehaty=\frac{73}{5}x-2$£¬
µ±x=5ʱ£¬$\widehaty=\frac{73}{5}¡Á5-2=71$£¬
ËùÒÔµÚ5ÄêµÄÏúÊÛÁ¿Ô¼Îª71Íò¼þ£®

µãÆÀ ±¾Ì⿼²é»Ø¹éÖ±Ïß·½³ÌµÄÓ¦Óã¬É¢µãͼµÄ»­·¨£¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª¼¯ºÏA={x|-1£¼x¡Ü1}£¬¼¯ºÏB={-1£¬1£¬3}£¬ÔòA¡ÉB={1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ä³¼¸ºÎÌåÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{16}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÇؾÅÉØÊÇÎÒ¹úÄÏËÎʱ´úµÄÊýѧ¼Ò£¬Æä´ú±í×÷¡¶ÊýÊé¾ÅÕ¡·ÊÇÎÒ¹ú13ÊÀ¼ÍÊýѧ³É¾ÍµÄ´ú±íÖ®Ò»£»ÈçͼÊÇÇØ¾ÅÉØËã·¨µÄÒ»¸ö³ÌÐò¿òͼ£¬ÔòÊä³öµÄSΪ£¨¡¡¡¡£©
A£®a1+x0£¨a3+x0£¨a0+a2x0£©£©µÄÖµB£®a3+x0£¨a2+x0£¨a1+a0x0£©£©µÄÖµ
C£®a0+x0£¨a1+x0£¨a2+a3x0£©£©µÄÖµD£®a2+x0£¨a0+x0£¨a3+a1x0£©£©µÄÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®µÚ96½ì£¨´º¼¾£©È«¹úÌǾÆÉÌÆ·½»Ò×»áÓÚ2017Äê3ÔÂ23ÈÕÖÁ25ÈÕÔÚËÄ´¨¾Ù°ì£®Õ¹¹Ý¸½½üÒ»¼Ò´¨²ËÌØÉ«²ÍÌüΪÁËÑо¿²Î»áÈËÊýÓë±¾µêËùÐèÔ­²ÄÁÏÊýÁ¿µÄ¹ØÏµ£¬ÔÚ½»Ò×»áǰ²éÔÄÁË×î½ü5´Î½»Ò×»áµÄ²Î»áÈËÊýx£¨ÍòÈË£©Óë²ÍÌüËùÓÃÔ­²ÄÁÏÊýÁ¿y£¨´ü£©£¬µÃµ½ÈçÏÂÊý¾Ý£º
µÚÒ»´ÎµÚ¶þ´ÎµÚÈý´ÎµÚËĴεÚÎå´Î
²Î»áÈËÊýx£¨ÍòÈË£©11981012
Ô­²ÄÁÏt£¨´ü£©2823202529
£¨¢ñ£©Çë¸ù¾ÝËù¸øÎå×éÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$
£¨¢ò£©Èô¸ÃµêÏÖÓÐÔ­²ÄÁÏ12´ü£¬¾ÝϤ±¾´Î½»Ò×»á´óÔ¼ÓÐ13ÍòÈ˲μӣ¬ÎªÁ˱£Ö¤Ô­²ÄÁÏÄܹ»Âú×ãÐèÒª£¬Ôò¸ÃµêÓ¦ÖÁÉÙÔÙ²¹³äÔ­²ÄÁ϶àÉÙ´ü£¿
£¨²Î¿¼¹«Ê½£º$\hat b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£©£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¾ØÕóA=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$£¬ÉèÇúÏßC£º£¨x-y£©2+y2=1ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»Ïµõ½ÇúÏßC¡ä£¬ÇóC¡äµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êý$f£¨x£©=\frac{sinx}{{2{e^x}}}$µÄͼÏóµÄ´óÖÂÐÎ×´ÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\frac{4}{3}$x3-2kx2-x+1ÓÐÁ½¸ö²»Í¬µÄ¼«Öµµãx1£¬x2£¨x1£¼1£¼x2£©£¬Èôg£¨x£©=$\frac{2x-k}{{x}^{2}+1}$£¬ÇÒx¡Ê[1£¬x2]ʱ£¬g£¨x£©¡Ý$\frac{k}{2}$ºã³ÉÁ¢£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{3}{4}$£¬+¡Þ£©B£®[1£¬+¡Þ£©C£®£¨$\frac{3}{4}$£¬1]D£®{1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=[2sin£¨x+$\frac{¦Ð}{3}$£©+sinx]cosx-$\sqrt{3}$sin2x
£¨1£©Çóf£¨x£©µÄÖÜÆÚ£»
£¨2£©Çóf£¨x£©ÔÚ[0£¬$\frac{5¦Ð}{12}$]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸