| x | 1 | 2 | 3 | 4 |
| y | 12 | 28 | 42 | 56 |
·ÖÎö £¨¢ñ£©ÔÚͼÖл³ö±íÖÐÊý¾ÝÖ±½Ó»³öÉ¢µãͼ£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©ÖеÄÉ¢µãͼÄâºÏyÓëxµÄ»Ø¹éÄ£ÐÍ£¬¼ÆËãyÓëxµÄÏà¹ØÏµÊý½üËÆÎª0.9996£¬ËµÃ÷yÓëxµÄÏßÐÔÏà¹Ø³Ì¶ÈÏ൱£¬ËµÃ÷¿ÉÒÔÓÃÏßÐԻعéÄ£ÐÍÄâºÏyÓëxµÄ¹ØÏµ£»
£¨¢ó£©Çó³ö»Ø¹éÖ±Ïß·½³Ì£¬È»ºóÇó½âµÚ5ÄêµÄÏúÊÛÁ¿£®
½â´ð ½â£º£¨¢ñ£©×÷³öÉ¢µãͼÈçͼ£º![]()
£¨¢ò£©ÓÉ£¨¢ñ£©É¢µãͼ¿ÉÖª£¬¸÷µã´óÖ·ֲ¼ÔÚÒ»ÌõÖ±Ï߸½½ü£¬ÓÉÌâÖÐËù¸ø±í¸ñ¼°²Î¿¼Êý¾ÝµÃ£º$\overline x=\frac{5}{2}$£¬$\overline y=\frac{69}{2}$£¬$\sum_{i=1}^4{{x_i}{y_i}=418}$£¬$\sqrt{\sum_{i=1}^4{{{£¨{y_i}-\overline y£©}^2}}}¡Ö32.6$£¬$\sum_{i=1}^4{x_i^2}=30$£¬$\sum_{i=1}^4{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©=\sum_{i=1}^4{{x_i}{y_i}}-\overline x\sum_{i=1}^4{y_i}=418-\frac{5}{2}¡Á138=73}$£¬$\sqrt{\sum_{i=1}^4{{{£¨{x_i}-\overline x£©}^2}}}=\sqrt{\sum_{i=1}^4{{x_i}^2-n{{\overline x}^2}}}=\sqrt{30-4¡Á{{£¨\frac{5}{2}£©}^2}}=\sqrt{5}¡Ö2.24$£¬$r=\frac{{\sum_{i=1}^4{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sqrt{\sum_{i=1}^4{{{£¨{x_i}-\overline x£©}^2}}\sum_{i=1}^4{{{£¨{y_i}-\overline y£©}^2}}}}}=\frac{73}{2.24¡Á32.6}¡Ö0.9996$£®
¡ßyÓëxµÄÏà¹ØÏµÊý½üËÆÎª0.9996£¬ËµÃ÷yÓëxµÄÏßÐÔÏà¹Ø³Ì¶ÈÏ൱´ó£¬
¡à¿ÉÒÔÓÃÏßÐԻعéÄ£ÐÍÄâºÏyÓëxµÄ¹ØÏµ£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª£º$\overline x=\frac{5}{2}$£¬$\overline y=\frac{69}{2}$£¬$\sum_{i=1}^4{{x_i}{y_i}=418}$£¬$\sum_{i=1}^4{x^2}=30$£¬$\sum_{i=1}^4{£¨{x_i}-\overline x}{£©^2}=5$£¬$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}=\frac{73}{5}$£¬$\widehata=\overline y-\widehatb\overline x=\frac{69}{2}-\frac{73}{5}¡Á\frac{5}{2}=-2$£¬
¹Êy¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\widehaty=\frac{73}{5}x-2$£¬
µ±x=5ʱ£¬$\widehaty=\frac{73}{5}¡Á5-2=71$£¬
ËùÒÔµÚ5ÄêµÄÏúÊÛÁ¿Ô¼Îª71Íò¼þ£®
µãÆÀ ±¾Ì⿼²é»Ø¹éÖ±Ïß·½³ÌµÄÓ¦Óã¬É¢µãͼµÄ»·¨£¬¿¼²é¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a1+x0£¨a3+x0£¨a0+a2x0£©£©µÄÖµ | B£® | a3+x0£¨a2+x0£¨a1+a0x0£©£©µÄÖµ | ||
| C£® | a0+x0£¨a1+x0£¨a2+a3x0£©£©µÄÖµ | D£® | a2+x0£¨a0+x0£¨a3+a1x0£©£©µÄÖµ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| µÚÒ»´Î | µÚ¶þ´Î | µÚÈý´Î | µÚËÄ´Î | µÚÎå´Î | |
| ²Î»áÈËÊýx£¨ÍòÈË£© | 11 | 9 | 8 | 10 | 12 |
| Ô²ÄÁÏt£¨´ü£© | 28 | 23 | 20 | 25 | 29 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | ||||
| C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨$\frac{3}{4}$£¬+¡Þ£© | B£® | [1£¬+¡Þ£© | C£® | £¨$\frac{3}{4}$£¬1] | D£® | {1} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com