| A. | ($\frac{3}{4}$,+∞) | B. | [1,+∞) | C. | ($\frac{3}{4}$,1] | D. | {1} |
分析 求出f′(x)=4x2-4kx-1,要则有△=(-4k)2+16>0,f′(1)=4-4k-1<0,解得k$>\frac{3}{4}$,且4${{x}_{2}}^{2}-4k{x}_{2}-1=0$,由g′(1)>0,g′(x2)=$\frac{-\frac{1}{4}(4{{x}_{2}}^{2}-4k{x}_{2})+1}{{{(x}_{2}}^{2}+1)^{2}}$=$\frac{\frac{3}{4}}{({{x}_{2}}^{2}+1)^{2}}$>0,
g(x)=$\frac{2x-k}{{x}^{2}+1}$,x∈[1,x2]时单调递增,只需$g(1)≥\frac{k}{2}即可$.
解答 解:f′(x)=4x2-4kx-1,要使函数f(x)=$\frac{4}{3}$x3-2kx2-x+1有两个不同的极值点x1,x2(x1<1<x2),
则有△=(-4k)2+16>0,f′(1)=4-4k-1<0,解得k$>\frac{3}{4}$,
且4${{x}_{2}}^{2}-4k{x}_{2}-1=0$
g′(x)=$\frac{-{x}^{2}+kx+1}{({x}^{2}+1)^{2}}$,g′(1)>0,g′(x2)=$\frac{-\frac{1}{4}(4{{x}_{2}}^{2}-4k{x}_{2})+1}{{{(x}_{2}}^{2}+1)^{2}}$=$\frac{\frac{3}{4}}{({{x}_{2}}^{2}+1)^{2}}$>0,
∴g(x)=$\frac{2x-k}{{x}^{2}+1}$,x∈[1,x2]时单调递增,
要g(x)≥$\frac{k}{2}$恒成立,只需$g(1)≥\frac{k}{2}即可$,
∴$\frac{3}{4}<k≤1$,
故选:C
点评 本题考查了利用导数求函数极值、单调性,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,e] | B. | (0,e) | C. | (e,+∞) | D. | [e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 |
| y | 12 | 28 | 42 | 56 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 7806 6572 0802 6314 2947 1821 9800 3204 9234 4935 3623 4869 6938 7481 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.48 | B. | 0.40 | C. | 0.64 | D. | 0.75 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| p(k2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [4,+∞) | C. | [8,+∞) | D. | (0,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com