精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}通项公式为an=2n,公比为q的等比数列{bn}满足bn≥an(n∈N+)恒成立,且b4=a4,则公比q的取值范围为[$\frac{5}{4}$,$\frac{4}{3}$].

分析 先求出${b}_{1}=\frac{8}{{q}^{3}}$,再由$\left\{\begin{array}{l}{{b}_{5}≥{a}_{5}}\\{{b}_{3}≥{a}_{3}}\end{array}\right.$,能求出公比q的取值范围.

解答 解:∵等差数列{an}通项公式为an=2n,公比为q的等比数列{bn}满足bn≥an(n∈N+)恒成立,且b4=a4
∴${b}_{1}{q}^{3}=8$,解得${b}_{1}=\frac{8}{{q}^{3}}$,
∵$\left\{\begin{array}{l}{{b}_{5}≥{a}_{5}}\\{{b}_{3}≥{a}_{3}}\end{array}\right.$,∴$\left\{\begin{array}{l}{\frac{8}{{q}^{3}}×{q}^{4}≥10}\\{\frac{8}{{q}^{3}}×{q}^{2}≥6}\end{array}\right.$,解得$\frac{5}{4}≤q≤\frac{4}{3}$.
∴公比q的取值范围为[$\frac{5}{4}$,$\frac{4}{3}$].
故答案为:[$\frac{5}{4}$,$\frac{4}{3}$].

点评 本题考查等比数列的公比的取值范围的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知sin36°=cos54°,可求得cos2016°的值为-$\frac{\sqrt{5}+1}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x+$\frac{4}{x}$,g(x)=2x+a,若?x1∈[$\frac{1}{2}$,1],?x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(  )
A.a≤1B.a≥1C.a≤2D.a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x∈R,设$\vec m=(2cosx\;,\;sinx+cosx)$,$\vec n=(\sqrt{3}sinx\;,\;sinx-cosx)$,记函数$f(x)=\vec m•\vec n$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,$c=\sqrt{3}$,a+b=3,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(z-i)i=2+3i,则|z|=(  )
A.$\sqrt{10}$B.3$\sqrt{2}$C.10D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sinxsin(x+$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C所对的边分别为a,b,c,若f(C)=$\frac{3}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设全集U=R,集合A={x|x>2},B={x|ax-1>0,a∈R}.
(1)当a=2时,求A∩B;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年的女干部,据此方案,她退休的年份是(  )
A.2019B.2020C.2021D.2022

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A、B、C所对的边分别是a,b,c,且4cosB-3=2cos2B.
(1)求sinB的值;
(2)若|$\overrightarrow{BA}$-$\frac{1}{2}$$\overrightarrow{BC}$|=3,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案