精英家教网 > 高中数学 > 题目详情
20.复数$\frac{i-1}{i}$(i是虚数单位)在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{i-1}{i}$=$\frac{-i(i-1)}{-i•i}$=1+i在复平面上对应的点(1,1)位于第一象限,
故选:A.

点评 本题考查了复数的运算法则、几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知角α的终边上一点P落在直线y=2x上,则sin2α=(  )
A.$-\frac{{2\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,已知a1=-1,an+an+1+4n+2=0.
(1)若bn=an+2n.求证:{bn}是等比数列,并写出{bn}的通项公式.
(2)求{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知两不同的平面α,β和两条不重合的直线m,n有下列四个命题:
①若m∥n,n⊥α则m⊥α.
②若m⊥α,m⊥β 则α∥β.
③若m⊥α,m∥n,n?β,则α⊥β.
④若m∥α,α∩β=n则m∥n.
其中真命题的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如表:
分组151.5~158.5158.5~165.5165.5~172.5172.5~179.5
频数621276
频率0.10.35a0.1
则表中的a=0.45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成.该八边形的面积为(  )
A.2sin α-2cos α+2B.sin α-$\sqrt{3}$cos α+3C.3sin α-$\sqrt{3}$cos α+1D.2sin α-cos α+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△PAB中,已知点$A({-\sqrt{6},0})$、B($\sqrt{6}$,0),动点P满足|PA|=|PB|+4.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设M(-2,0),N(2,0),过点N作直线l垂直于AB,且l与直线MP交于点Q,设点Q关于x轴的对称点为R,求证:$\overrightarrow{OP}•\overrightarrow{OR}$为定值;
(Ⅲ)在(II)的条件下,试问x轴上是否存在定点T,使得PN⊥QT.若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2…+an-1b2+anb1=2n+1-n-2.
(1)若数列{an}是首项和公差都是1的等差数列,求b1,b2,并证明数列{bn}是等比数列;
(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由;
(3)若数列{an}是等差数列,数列{bn}是等比数列,求证:$\frac{1}{{a}_{1}{b}_{1}}$+$\frac{1}{{a}_{2}{b}_{2}}$+…+$\frac{1}{{a}_{n}{b}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案