分析 由已知利用同角三角函数基本关系式可求sinα,sinβ的值,进而利用两角和的余弦函数公式即可计算得解cos(α+β)的值.
解答 解:∵cosα=$\frac{3}{5}$,cosβ=$\frac{4}{5}$,并且α和β都是锐角,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{3}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{3}{5}×\frac{4}{5}$-$\frac{4}{5}×\frac{3}{5}$=0.
点评 本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±$\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | -$\frac{{\sqrt{5}}}{3}$ | D. | ±$\frac{{\sqrt{5}}}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 价 格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
| 需求量y | 12 | 10 | 7 | 5 | 3 |
| n-2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 小概率0.01 | 1.000 | 0.990 | 0.959 | 0.917 | 0.874 | 0.834 | 0.798 | 0.765 | 0.735 | 0.708 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com