精英家教网 > 高中数学 > 题目详情
17.已知平面向量$\overrightarrow a$=(0,-1),$\overrightarrow b$=(2,2),|λ$\overrightarrow a$+$\overrightarrow b$|=2,则λ的值为(  )
A.1+$\sqrt{2}$B.$\sqrt{2}$-1C.2D.1

分析 求出$λ\overrightarrow{a}+\overrightarrow{b}$的坐标,代入模长公式列出方程解出λ.

解答 解:$λ\overrightarrow{a}+\overrightarrow{b}$=(2,2-λ),
∵|$λ\overrightarrow{a}+\overrightarrow{b}$|=2,
∴22+(2-λ)2=4,解得λ=2.
故选:C.

点评 本题考查了平面向量的坐标运算,数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知f(2x+1)的定义域为[1,3],则f(x)的定义域为:[3,7];f(3-2x)的定义域为:[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=4\sqrt{3}sinxcosx-4{cos^2}x+5,x∈R$
(1)求f(x)取得最大值时x的集合
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在[-2,2]上的奇函数f(x)是增函数,求使f(2a-1)+f(1-a)>0成立的实数a的取值范围为$({0,\frac{3}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中在定义域内既是奇函数又是增函数的为(  )
A.y=2x+1B.y=x2C.y=$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2x-2-x的图象(  )
A.关于y轴对称B.关于原点对称C.关于x轴对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a•b<|a•b|,则有(  )
A.a•b<0B.a<b<0C.a>0,b<0D.a<0<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项不为零的数列{an}的前n项和为Sn,且a1=1,Sn=$\frac{1}{2}$an•an+1(n∈N*
(1)求证:数列{an}是等差数列;
(2)设数列{bn}满足:bn=${2}^{{a}_{n}-2{a}_{n+1}}$,且$\underset{lim}{n→∞}$(bkbk+1+bk+1bk+2+…+bnbn+1)=$\frac{1}{384}$,求正整数k的值;
(3)若m、k均为正整数,且m≥2,k<m.在数列{ck}中,c1=1,$\frac{{c}_{k+1}}{{c}_{k}}$=$\frac{k-m}{{a}_{k+1}}$,求c1+c2+…+cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(2x+1,4),$\overrightarrow{b}$=(2-x,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x的值为(  )
A.$-\frac{1}{6}$B.$-\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案