·ÖÎö £¨¢ñ£©Í¨¹ý|OA|=|OF|=$\sqrt{2}$¿ÉµÃb¡¢cµÄÖµ£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨¢ò£©Í¨¹ý£¨1£©ÖªC£¨-2£¬0£©£¬D£¨2£¬0£©£¬ÉèÖ±ÏßCM·½³Ì²¢ÓëÍÖÔ²ÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí¿ÉµÃµãP×ø±ê£¬ÀûÓÃ$\overrightarrow{QM}•\overrightarrow{DP}$=0£¬¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©¡ß|OA|=|OF|=$\sqrt{2}$£¬¡à$b=c=\sqrt{2}$£¬
¡àa2=b2+c2=4£¬
¡àÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+\frac{y^2}{2}=1$£»
£¨¢ò£©½áÂÛ£º´æÔÚQ£¨0£¬0£©£¬Ê¹µÃÒÔMPΪֱ¾¶µÄÔ²ºã¹ýÖ±ÏßDP¡¢MQµÄ½»µã£®
ÀíÓÉÈçÏ£º
ÓÉ£¨1£©Öª£ºC£¨-2£¬0£©£¬D£¨2£¬0£©£®
ÓÉÌâÒâ¿ÉÉèCM£ºy=k£¨x+2£©£¬P£¨x1£¬y1£©£®
¡ßMD¡ÍCD£¬¡àM£¨2£¬4k£©£¬
ÁªÁ¢$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{2}=1\;\\ y=k£¨x+2£©\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨1+2k2£©x2+8k2x+8k2-4=0£¬
¡à¡÷=£¨8k2£©2-4£¨1+2k2£©£¨8k2-4£©£¾0£¬
¡à$-2{x_1}=\frac{{8{k^2}-4}}{{1+2{k^2}}}£¬¼´{x_1}=\frac{{2-4{k^2}}}{{1+2{k^2}}}$£¬
¡à${y_1}=k£¨{x_1}+2£©=\frac{4k}{{1+2{k^2}}}$£¬
¡à$µãP£¨\frac{{2-4{k^2}}}{{1+2{k^2}}}£¬\frac{{4{k^{\;}}}}{{1+2{k^2}}}£©$£¬
ÉèQ£¨x0£¬0£©£¬ÇÒx0¡Ù-2£¬
ÈôÒÔMPΪֱ¾¶µÄÔ²¾¹ýDP£¬MQµÄ½»µã£¬
ÔòMQ¡ÍDP£¬¡à$\overrightarrow{QM}•\overrightarrow{DP}$=0ºã³ÉÁ¢£¬
¡ß$\overrightarrow{QM}=£¨2-{x_0}£¬4k£©$£¬$\overrightarrow{DP}=£¨\frac{{-8{k^2}}}{{1+2{k^2}}}£¬\frac{4k}{{1+2{k^2}}}£©$£¬
¡à$\overrightarrow{QM}•\overrightarrow{DP}=£¨2-{x_0}£©•\frac{{-8{k^2}}}{{1+2{k^2}}}+4k•\frac{4k}{{1+2{k^2}}}=0$£¬
¼´$\frac{{8{k^2}}}{{1+2{k^2}}}{x_0}=0$ºã³ÉÁ¢£¬¡àx0=0£®
¡à´æÔÚQ£¨0£¬0£©£¬Ê¹µÃÒÔMPΪֱ¾¶µÄÔ²ºã¹ýÖ±ÏßDP¡¢MQµÄ½»µã£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÇóÍÖÔ²·½³Ì£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 4 | D£® | $\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {£¨1£¬-2£©} | B£® | {£¨1£¬2£©} | C£® | £¨1£¬2£© | D£® | £¨1£¬-2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com