精英家教网 > 高中数学 > 题目详情
8.如图所示,AB,BC是两条傍山公路,∠ABC=120°,现在拟从M,N两处修建一条隧道(单位:千米).
(1)若BN,BM,MN的长成等差数列,且公差为4,求隧道MN的长;
(2)若MN=12,记∠MNB=θ,试用θ表示△MBN的周长L,并求周长L的最大值.

分析 (1)利用余弦定理列方程解出;
(2)根据正弦定理用θ表示出BN,BM,使用和角公式化简L,根据θ的范围和正弦函数的性质得出L的最大值.

解答 解:(1)设BM=x,则BN=x-4,MN=x+4,
在△MBN中,由余弦定理得MN2=BN2+BM2-2BN•BMcosB,
即(x+4)2=(x-4)2+x2+x(x-4),解得x=10.
∴MN=x+4=14(千米).
(2)∠BMN=60°-θ,
由正弦定理得$\frac{BM}{sinθ}=\frac{BN}{sin(60°-θ)}=\frac{MN}{sin120°}$=8$\sqrt{3}$,
∴BM=8$\sqrt{3}$sinθ,BN=8$\sqrt{3}$sin(60°-θ)
∴L=BM+BN+MN=8$\sqrt{3}$sinθ+8$\sqrt{3}$sin(60°-θ)+12=12cosθ+4$\sqrt{3}$sinθ+12=8$\sqrt{3}$sin(θ+60°)+12.
∵0<θ<60°,∴60°<θ+60°<120°.
∴当θ+60°=90°时,L取得最大值8$\sqrt{3}+12$千米.

点评 本题考查了正余弦定理在解三角形中的应用,三角函数的恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若过点(2,0)的直线与曲线y=x3和y=ax2+7x-4都相切,则a=2或$-\frac{49}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示,把f(x)的图象上各点向左平移$\frac{1}{2}$单位,得到函数g(x)的图象,则g($\frac{5}{2}$)=(  )
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求数列$\frac{1}{1+\sqrt{3}}$,$\frac{1}{\sqrt{2}+2}$,…,$\frac{1}{\sqrt{n}+\sqrt{n+2}}$,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cosxsin(x+$\frac{π}{6}$)+1,x∈R.
(1)求函数f(x)的最小正周期及在[0,π]上的单调递增区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l1:2x-(a-1)y+1=0,l2:2ax+(a+1)y+a=0(a∈R).
(1)若直线l1的倾斜角是直线l2的倾斜角的一半,求a值;
(2)若直线l1,l2与y轴围成的三角形面积为$\frac{1}{2}$.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x+ln(x-1),则函数y=f(2x)定义域为(  )
A.{x|x>1}B.{x|x<1}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x2-2x+a-8≤0对于一切x∈(1,3)都成立,求a的范围(-∞,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若${∫}_{0}^{a}$$\sqrt{{a}^{2}-{x}^{2}}$dx=π(a>0),则实数a的值为2.

查看答案和解析>>

同步练习册答案