精英家教网 > 高中数学 > 题目详情
7.下列函数中,既是偶函数又在区间(0,+∞)上是减函数的是(  )
A.y=-4x+1B.y=-x2C.$y=\frac{2}{x}$D.y=|x|

分析 根据函数奇偶性和单调性的性质进行判断即可.

解答 解:y=-4x+1为减函数,为非奇非偶函数,不满足条件.
y=-x2为偶函数,在区间(0,+∞)上是减函数,满足条件.
$y=\frac{2}{x}$是奇函数,不满足条件.
y=|x|是偶函数,在(0,+∞)上为增函数,不满足条件.
故选:B

点评 本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若loga$\frac{1}{2}$>loga$\frac{1}{3}$,则a的取值范围是区间(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),cosβ=$\frac{12}{13}$,β是第四象限角,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列对象能构成集合的是(  )
A.高一年级全体较胖的学生
B.sin30°,sin45°,cos60°,1
C.全体很大的自然数
D.平面内到△ABC三个顶点距离相等的所有点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a>0,b>0.若3a•3b=3,则$\frac{1}{a}+\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax
(1)若f(x)在R上单调递增,求a的取值集合;
(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}前n项和为sn,满足S30=S60,则下列结论中正确的是(  )
A.S45是Sn中的最大值B.S45是Sn中的最小值
C.S45=0D.S90=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(log3$\frac{1}{5}$)=(  )
A.4B.-4C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2ax+1,g(x)=x-a,其中a>0,x≠0.
(1)对任意x∈[1,2],都有f(x)>g(x)恒成立,求实数a的取值范围;
(2)对任意x1∈[-2,-1],x2∈[2,4],都有f(x1)>g(x2)恒成立,求实数a的取值范围;
(3)存在x1∈[-2,-1],x2∈[2,4],使f(x1)>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案