精英家教网 > 高中数学 > 题目详情
18.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且$\sqrt{3}$c=2asinC.
(Ⅰ)求角A;
(Ⅱ)若a=$\sqrt{7}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

分析 (I)利用正弦定理得出sinA,sinC的关系,代入条件式得出sinA的值;
(II)根据面积可得bc=6,代入余弦定理可求出b+c.

解答 解:(I)在锐角△ABC中,∵$\sqrt{3}c=2asinC$,∴$\frac{a}{c}=\frac{\sqrt{3}}{2sinC}$,
又∵$\frac{a}{c}=\frac{sinA}{sinC}$,∴sinA=$\frac{\sqrt{3}}{2}$.
∵△是锐角三角形,
∴A=$\frac{π}{3}$.
(Ⅱ)∵$S=\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}bc$=$\frac{3\sqrt{3}}{2}$,
∴bc=6.
由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-2bc-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-12-7}{12}$=$\frac{1}{2}$,
解得b+c=5.
∴△ABC的周长为$a+b+c=\sqrt{7}+5$.

点评 本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.Rt△ABC中,∠B=90°,AB=$\sqrt{3}$,BC=1,求$\overrightarrow{AB}$$•\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l1:$\left\{\begin{array}{l}{x=-1+t}\\{y=2+t}\end{array}\right.$与l2:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=-2+tsinα}\end{array}\right.$(t为参数),若l1∥l2,则l1与l2之间的距离为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(sinx,sin2x+1),$\overrightarrow{b}$=(2sinx,1),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$(x∈R).
(1)求函数f(x)的最小正周期
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求抛物线$\left\{\begin{array}{l}{x=2t}\\{y=2{t}^{2}+1}\end{array}\right.$(t为参数)的准线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,正方形ABCD中,M、N分别是BC、CD的中点,若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,则λ+μ=(  )
A.2B.$\frac{8}{3}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=kx与函数y=tanx$(-\frac{π}{2}<x<\frac{π}{2})$的图象交于M,N(不与坐标原点O重合) 两点,点A的坐标为$(-\frac{π}{2},0)$,则$(\overrightarrow{AM}+\overrightarrow{AN})•\overrightarrow{AO}$=$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sin(α-$\frac{π}{6}$)=-$\frac{4}{5}$,则cos(α+$\frac{π}{3}$)=$\frac{4}{5}$;cos(2α-$\frac{π}{3}$)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.实数$\frac{a+i}{2-i}$(a为实数)的共轭复数为(  )
A.1B.-5C.-1D.-i

查看答案和解析>>

同步练习册答案