分析 (I)利用正弦定理得出sinA,sinC的关系,代入条件式得出sinA的值;
(II)根据面积可得bc=6,代入余弦定理可求出b+c.
解答 解:(I)在锐角△ABC中,∵$\sqrt{3}c=2asinC$,∴$\frac{a}{c}=\frac{\sqrt{3}}{2sinC}$,
又∵$\frac{a}{c}=\frac{sinA}{sinC}$,∴sinA=$\frac{\sqrt{3}}{2}$.
∵△是锐角三角形,
∴A=$\frac{π}{3}$.
(Ⅱ)∵$S=\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}bc$=$\frac{3\sqrt{3}}{2}$,
∴bc=6.
由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-2bc-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-12-7}{12}$=$\frac{1}{2}$,
解得b+c=5.
∴△ABC的周长为$a+b+c=\sqrt{7}+5$.
点评 本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com