精英家教网 > 高中数学 > 题目详情
1.如图,AD切圆O于D点,圆O的割线ABC过O点,BC交DE于F点,若BO=2,AD=2$\sqrt{3}$.则给出的
下列结论中,错误的是(  )
A.AB=2B.$\frac{BF}{DF}$=$\frac{EF}{CF}$C.∠E=30°D.△EBD∽△CDB

分析 对四个选项分别进行判断,即可得出结论.

解答 解:由切割线定理可得AD2=AB•AC,即12=AB•(AB+4),所以AB=2,故A正确;
由相交弦定理可得BF•CF=DF•EF,故可得B正确;
由△ABD∽△ADC,可得$\frac{BD}{DC}=\frac{AB}{AD}=\frac{\sqrt{3}}{3}$,因为BC=4,所以DC=23,所以∠C=30°,所以∠E=30°,故C正确;
△EBD、△CDB中只有一对角相等,不可推出△EBD∽△CDB,故不正确.
故选:D.

点评 本题考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为1.6,两焦点的距离为3,则a+b=$\frac{15}{16}$+$\frac{3\sqrt{39}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程为ρ2=$\frac{6}{2co{s}^{2}θ+3si{n}^{2}θ}$,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.
(Ⅰ)求曲线C的普通方程;
(Ⅱ)P,Q是曲线C上的两个点,当OP⊥OQ时,求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲、乙两人在2015年1月至5月的纯收入(单位:千元)的数据如下表:
月份x12345
甲的纯收入y2.93.33.64.44.8
乙的纯收入z2.83.43.84.55.5
(1)由表中数据直观分析,甲、乙两人中谁的纯收入较稳定?
(2)求y关于x的线性回归方程,并预测甲在6月份的纯收入;
(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间(3,3.5)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知偶函数f(x),当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则$f({-\frac{π}{3}})+f(4)$=(  )
A.$\sqrt{3}+2$B.1C.3D.$-\sqrt{3}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.两条直线l1:3x+4y+1=0和l2:5x+12y-1=0相交,则其顶点的角平分线所在直线的方程为7x-4y+9=0或8x+14y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=1-3sin2x的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设 Pn(xn,yn)是直线2x-y=$\frac{n}{n+1}$(n∈N*)与圆x2+y2=2在第一象限的交点,则极限$\lim_{n→∞}\frac{{{y_n}-1}}{{{x_n}-1}}$=(  )
A.-1B.-$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列两个推理:
①在△ABC中,若D为BC的中点,则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),由此推测:在空间四面体ABCD中,若M为△BCD的重心,则$\overrightarrow{AM}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$).
②无根不循环小数都是无理数,因为e=2.7182818459045…是无限不循环小数,所以e是无理数.
对于上述两个推理,下列判断正确的是(  )
A.①是类比推理,②是归纳推理B.①是类比推理,②是演绎推理
C.①是归纳推理,②是演绎推理D.①是演绎推理,②是类比推理

查看答案和解析>>

同步练习册答案