精英家教网 > 高中数学 > 题目详情
3.“tanα≠$\sqrt{3}$”是“α≠$\frac{π}{3}$”的(  )
A.充分且必要条件B.既不充分也不必要条件
C.必要不充分条件D.充分不必要条件

分析 取特殊值得到不是必要分条件,根据三角函数的性质得到必要性.

解答 解:“tanα≠$\sqrt{3}$”,得“α≠$\frac{π}{3}$”,是充分条件,“α≠$\frac{π}{3}$”例如α=$\frac{4π}{3}$,则tanα=$\sqrt{3}$,不是必要分条件,
故“tanα≠$\sqrt{3}$”是“α≠$\frac{π}{3}$”的充分不必要条件
故选:D

点评 本题考查了充分必要条件,考查三角函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前 n 项和为 Sn,a1=1,且 an+1=2Sn+1,n∈N?
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令 c=log3a2n,bn=$\frac{1}{{{c_n}•{c_{n+2}}}}$,记数列{bn}的前 n 项和为Tn,若对任意 n∈N?,λ<Tn 恒成立,求实数 λ 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$f(x)={(\frac{1}{2})^x}-{x^3}$,已知0<a<b<c,且f(a)•f(b)•f(c)<0,若x0是函数f(x)的一个零点,则下列不等式不可能成立的是(  )
A.x0<aB.0<x0<1C.b<x0<cD.a<x0<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二项式(2x3-$\frac{1}{\sqrt{x}}$)7展开式中的常数项为(  )
A.-14B.-7C.14D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数$z=\frac{3-bi}{i}({b∈R})$的实部和虚部相等,则|z|=(  )
A.2B.3C.$2\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=cosx+ex-2(x<0)与g(x)=cosx+ln(x+m)图象上存在关于y轴对称的点,则m的取值范围是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,$\frac{1}{\sqrt{e}}$)C.(-∞,$\sqrt{e}$)D.(-∞,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={y|y=x${\;}^{\frac{1}{3}}$},B={x|y=ln(x-1)},则A∩B等于(  )
A.[1,+∞)B.(0,1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等比数列中,若a4•a7+a5•a6=20,则此数列前10项的积为105

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若对任意单位向量$\overrightarrow{e}$,均有|$\overrightarrow{a}$•$\overrightarrow{e}$|+|$\overrightarrow{b}$•$\overrightarrow{e}$|≤$\sqrt{6}$,则当$\overrightarrow{a}$$•\overrightarrow{b}$取最小值时,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为arccos(-$\frac{1}{4}$).

查看答案和解析>>

同步练习册答案