精英家教网 > 高中数学 > 题目详情
8.如图,正方体ABCD-A1B1C1D1的棱长为4,动点E,F在棱A1B1上,动点P,Q分别在棱AB,CD上,若EF=2,现有以下五种说法:
①四面体PEFQ的体积与P,Q点的位置无关
②△EFQ的面积为定值
③四面体PEFQ的体积与点P的位置有关,与点Q的位置无关
④四面体PEFQ的体积为正方体体积的$\frac{1}{12}$
⑤点P到平面EFQ的距离随着P的变化而变化
其中正确的序号是①②④.

分析 由长方体的结构特征可知△EFP的面积为定值,Q到平面ABB1A1的距离为定值4,计算出四面体的体积和正方体的体积进行判断.

解答 解:∵CD∥平面EFP,∴Q到平面EFP的距离等于D到平面EFP的距离AD=4.
而S△EFP=$\frac{1}{2}EF×A{A}_{1}$=$\frac{1}{2}×2×4$=4.
∴VQ-EFP=$\frac{1}{3}{S}_{△EFP}•AD$=$\frac{1}{3}×4×4$=$\frac{16}{3}$.
∵正方体体积V正方体=43=64,∴VQ-EFP=$\frac{1}{12}$V正方体
故①正确,③错误,④正确.
∵CD∥A1B1,∴Q到直线A1B1的距离h为定值,而EF为定值,故△EFQ的面积为定值,故②正确.
又∵四面体PEFQ的体积为定值,∴点P到平面EFQ的距离为定值,故⑤错误.
故答案为:①②④.

点评 本题考查了长方体的结构特征,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,
(1)求证:cos2$\frac{A+B}{2}$+cos2$\frac{C}{2}$=1;
(2)若cos($\frac{π}{2}$+A)sin($\frac{3}{2}$π+B)tan(C-π)<0,求证:△ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.△ABC中,AC=BC=1,AC⊥BC,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论正确的是(  )
A.|$\overrightarrow{a}$-$\overrightarrow{b}$|=1B.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$C.($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{5}{2}$D.($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求过点P(8,-2)且与直线x+y+1=0垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-m≤0}\\{y+m≥0}{\;}\end{array}\right.$表示的平面区域内存在点P(x0,y0)满足$\frac{|3{x}_{0}-4{y}_{0}-12|}{5}$=1,则实数m的取值范围是(  )
A.[1,+∞)B.$[\frac{17}{7},+∞)$C.$[1,\frac{17}{7}]$D.$(-∞,\frac{17}{7}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+$\frac{a}{x}$(a为实常数).
(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3-3ax+$\frac{1}{4}$,若x轴为曲线y=f(x)的切线,则a的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图中的程序框图表示求三个实数a,b,c中最大数的算法,那么在空白的判断框中,应该填入(  )
A.a>xB.b>xC.c<xD.c>x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x-3,2),且$\overrightarrow a$⊥$\overrightarrow b$.
(Ⅰ)求x的值;
(Ⅱ)试确定实数k的值,使k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$平行.

查看答案和解析>>

同步练习册答案