分析 作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.
解答
解:作出不等式组对应的平面区域如图:
由z=2x-y得y=2x-z,
作出y=2x,的图象,平移函数y=2x,
由图象知当曲线经过点A时,
曲线在y轴上的截距最大,此时z最小,
由$\left\{\begin{array}{l}{3x+y-6=0}\\{x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
此时z=21-3=-1,
故答案为:-1.
点评 本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用指数函数进行平移是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 任意正数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com