精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为2.

分析 根据函数在x=2处有极小值,得到f′(2)=0,解出关于c的方程,再验证是否为极小值即可.

解答 解:∵函数f(x)=x(x-c)2
∴f′(x)=3x2-4cx+c2
又f(x)=x(x-c)2在x=2处有极值,
∴f′(2)=12-8c+c2=0,
解得c=2或6,
又由函数在x=2处有极小值,故c=2,
c=6时,函数f(x)=x(x-c)2在x=2处有极大值,
故答案为:2.

点评 本题考查函数在某一点取得极值的条件,是中档题,本题解题的关键是函数在这一点取得极值,则函数在这一点点导函数等于0,注意这个条件的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数y=Asin(ωx+φ)(A>0,ω>0)的最大值为4,最小值为-4,最小正周期为$\frac{π}{2}$,直线x=$\frac{π}{3}$是其图象的一条对称轴,则符合条件的函数解析式是(  )
A.y=4sin(4x+$\frac{π}{6}$)B.y=4sin(4x+$\frac{π}{3}$)C.y=2sin(4x+$\frac{π}{3}$)D.y=2sin(4x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系xOy中,已知点A(2,1),B(4,-2),C(7,0).
(1)证明:△ABC是等腰直角三角形;
(2)若E为BC的中点,试在线段AC上确定点D及确定实数t,使得$\overrightarrow{OB}$+t$\overrightarrow{OD}$=$\overrightarrow{OE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b在区间$[{0,\sqrt{3}}]$上取值,则函数$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有两个相异极值点的概率是(  )
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求矩阵M=$[{\begin{array}{l}0&0\\ 0&1\end{array}}]$的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-ln(x+m).
(1)设x=0是f(x)的极值点,求函数f(x)在[1,2]上的最值;
(2)若对任意x1,x2∈[0,2]且x1>x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,求m的取值范围.
(3)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x3-2tx2+t2x在x=2处有极小值,则实数t的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a是实常数,函数f(x)=xlnx+ax2
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求证:-$\frac{1}{2}$<a<0;
②求证:f(x2)>f(x1)且x1∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个命题:(1)y=1+x和y=$\sqrt{(1+x)^{2}}$表示相等函数;
(2)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(3)f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是a≥-3;
(4)[-1,0]是y=x2-2|x|-3的一个递增区间.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案