分析 (Ⅰ)设P的坐标为(0,t),由题目条件即可得出结论;
(Ⅱ)设出l′:y=x+b,由O1上恰有四个不同的点到直线l′的距离等于$\frac{\sqrt{2}}{2}$,即可得出答案.
解答 解:(Ⅰ)由题意可得,设P的坐标为(0,t),
∵O1P⊥l,
∴$\frac{t-0}{0-1}$=-1,∴t=1,
即点P的坐标为(0,1),
从而圆O1的半径r=|O1P|=$\sqrt{2}$,
故所求圆O1的方程为(x-1)2+y2=2;
(Ⅱ)∵l∥l′,∴设l′:y=x+b,
由圆O1上恰有四个点到直线l′距离为$\frac{\sqrt{2}}{2}$,
得圆心到直线y=x+b的距离d=$\frac{|1+b|}{\sqrt{2}}$$<\frac{\sqrt{2}}{2}$,
解得-2<b<0,
即直线l′纵截距的取值范围为(-2,0).
点评 本题考查圆的切线,根据圆的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (7+$\sqrt{2}$)π | B. | (8+$\sqrt{2}$)π | C. | $\frac{22π}{7}$ | D. | (1+$\sqrt{2}$)π+6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com