精英家教网 > 高中数学 > 题目详情
2.如图,四棱锥P-ABCD中,底面ABCD是梯形,∠ADC=∠BAD=90°且AB=AD=PD=2CD=2,PD⊥平面ABCD,E是PA中点.
(1)求证:DE⊥PB
(2)求平面PAD和平面PBC所成锐二面角的余弦值.

分析 如图以D为原点建立空间直角坐标系D-xyz,则D(0,0,0),A(0,2,0),B(2,2,0),C(1,0,0),P(0,0,2),E(0,1,1)
(1)可得$\overrightarrow{DE}•\overrightarrow{PB}=0×2+2×1+(-2)×1=0$,DE⊥PB.
(2)求出平面PBC的法向量为$\overrightarrow{m}=(x,y,z)$,可知平面PAD的法向量为$\overrightarrow{DC}=(1,0,0)$.
cos$<\overrightarrow{m},\overrightarrow{DC}>=\frac{\sqrt{6}}{3}$,即可得平面PAD和平面PBC所成锐二面角的余弦值

解答 解:如图以D为原点建立空间直角坐标系D-xyz,
∵四棱锥P-ABCD中,底面ABCD是梯形,∠ADC=∠BAD=90°
且AB=AD=PD=2CD=2,PD⊥平面ABCD,E是PA中点
则D(0,0,0),A(0,2,0),B(2,2,0),
C(1,0,0),P(0,0,2),E(0,1,1)
(1)证明:可得$\overrightarrow{PB}=(2,2,-2),\overrightarrow{DE}=(0,1,1)$,
即$\overrightarrow{DE}•\overrightarrow{PB}=0×2+2×1+(-2)×1=0$,
∴DE⊥PB.
(2)设平面PBC的法向量为$\overrightarrow{m}=(x,y,z)$,
$\overrightarrow{CP}=(-1,0,2),\overrightarrow{CB}=(1,2,0)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CP}=-x+2z=0}\\{\overrightarrow{m}•\overrightarrow{CB}=x+2y=0}\end{array}\right.$,取$\overrightarrow{m}=(2,-1,1)$.
可知平面PAD的法向量为$\overrightarrow{DC}=(1,0,0)$.
cos$<\overrightarrow{m},\overrightarrow{DC}>=\frac{\sqrt{6}}{3}$,
∴平面PAD和平面PBC所成锐二面角的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查直线与线垂直的证明,考查平面与平面所成的角的余弦值的求法,解题时要认真审题,注意等价转化思想和向量法的合理运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在等比数列{an}中,若a5+a6+a7+a8=$\frac{15}{8}$,a6a7=-$\frac{9}{8}$,则$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$+$\frac{1}{{a}_{7}}$+$\frac{1}{{a}_{8}}$=-$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)>f(π),则f(x)的递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]((k∈Z)D.[kπ-$\frac{π}{2}$,kπ]((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}前n项和为${S_n}=2-5+8-11+14-17+…+{(-1)^{n-1}}(3n-1)$,则S15+S22-S31的值是(  )
A.-57B.-37C.16D.57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在平面直角坐标系xOy中,将直线y=$\frac{x}{2}$与直线x=1及x轴围成的封闭图形绕x轴旋转一周得到一个圆锥,圆锥的体积V=${∫}_{0}^{1}$π($\frac{x}{2}$)2dx=$\frac{π}{12}$;据此类比,将曲线y=x2(x≥0)与直线y=2及y轴围成的封闭图形绕y旋转一周得到一个旋转体,此旋转体的体积是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将圆C1:x2+y2=4上每一点的纵坐标保持不变,横坐标变为原来的$\sqrt{5}$倍得到曲线C2
(1)写出C2的参数方程;
(2)已知F(-4,0),直线l的参数方程为$\begin{array}{l}\left\{\begin{array}{l}x=-4+\sqrt{2}t\\ y=\sqrt{2}t\end{array}\right.\end{array}$(t为参数),直线l交曲线C2于A,B两点,求|AF|+|BF|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知角α终边经过点P(-3,-4),求sinα,cosα,tanα的值?
(2)已知角α是第二象限角,且$sinα=\frac{3}{5}$,求cosα,tanα的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)任作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2).
(1)证明:y1y2为常数,并求当y1y2=-8时抛物线C的方程;
(2)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.2016年春运期间为查醉酒驾驶,将甲、乙、丙三名交警安排到某商业中心附近的两个不同路口突击检查,每个路口至少一人,则甲、乙两名交警不在同一路口的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案