(本小题满分12分)
定义在
上的奇函数
,已知当
时,![]()
(1)写出
在
上的解析式
(2)求
在
上的最大值
(3)若
是
上的增函数,求实数
的范围。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数
,![]()
,记
。
(Ⅰ)判断
的奇偶性,并证明;
(Ⅱ)对任意
,都存在
,使得
,
.若
,求实数
的值;
(Ⅲ)若
对于一切
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
定义域为
,且
.
设点
是函数图像上的任意一点,过点
分别作直线
和
轴的垂线,垂足分别为
.![]()
(1)写出
的单调递减区间(不必证明);(4分)
(2)设点
的横坐标
,求
点的坐标(用
的代数式表示);(7分)
(3)设
为坐标原点,求四边形
面积的最小值.(7分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知
是定义在[-1,1]上的奇函数,当
,且
时有
.
(1)判断函数
的单调性,并给予证明;
(2)若
对所有
恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分) 已知函数f(x)=-1+2
sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=
(
>2),BC=2,且AE=AH=CF=CG,设AE=
,绿地面积为
.![]()
(1)写出
关于
的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积
最大? (10分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com