【题目】已知抛物线,直线、(),与恰有一个公共点,与恰有一个公共点,与交于点.
(1)当时,求点到准线的距离;
(2)当与不垂直时,求的取值范围;
(3)设是平面上一点,满足且,求和的夹角大小.
科目:高中数学 来源: 题型:
【题目】港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件。从某企业生产的桥梁构件中抽取件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.
(1)求这些桥梁构件质量指标值落在区间内的频率;
(2)用分层抽样的方法在区间内抽取一个容量为的样本,将该样本看成一个总体,从中任意抽取件桥梁构件,求这件桥梁构件都在区间内的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于,两点.
(1)求椭圆的方程;
(2)若是弦的中点,是椭圆上一点,求的面积最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且经过点
(1)求椭圆的方程;
(2)是否存在经过点的直线,它与椭圆相交于两个不同点,且满足为坐标原点)关系的点也在椭圆上,如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2 | 4 | 5 | 6 | 7 |
若由资料知对呈线性相关关系.试求:
(1)求;
(2)线性回归方程;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算的值时,可根据以下公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、、、是同一平面上不共线的四点,若存在一组正实数、、,使得,则三个角、、( )
A. 都是钝角B. 至少有两个钝角
C. 恰有两个钝角D. 至多有两个钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为,作平面与底面不平行与棱,,,分别交于E,F,G,H,记EA,FB,GC,HD分别为,,,,若,,则多面体EFGHABCD的体积为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程及曲线的直角坐标方程,并指出两曲线的轨迹图形;
(2)曲线与两坐标轴的交点分别为、,点在曲线上运动,当曲线与曲线相切时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某公园内有两条道路,,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知, .
(1)若绿化区域的面积为1,求道路的长度;
(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设(),当为何值时,该计划所需总费用最小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com