精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,直线),恰有一个公共点恰有一个公共点交于点.

(1)当时,求点准线的距离;

(2)当不垂直时,求的取值范围;

(3)设是平面上一点,满足,求的夹角大小.

【答案】(1) (2) (3)

【解析】

(1),因为恰有一个公共点,,所以,再求出抛物线的准线方程和点准线的距离.(2)由可得,所以.(3) 由题得, 联立,联立,再求出,根据,求得

解方程,所以,即得的夹角为.

(1)

恰有一个公共点,,∴

因为抛物线准线为,所以点准线的距离.

(2)由可得,消去得,

整理得,∴

(3)由题得, 联立,联立

,∴,与联立得

由第(2)问结论,,消去a

,∵,据此

,解得,∴的夹角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件。从某企业生产的桥梁构件中抽取件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间内的频率之比为.

(1)求这些桥梁构件质量指标值落在区间内的频率;

(2)用分层抽样的方法在区间内抽取一个容量为的样本,将该样本看成一个总体,从中任意抽取件桥梁构件,求这件桥梁构件都在区间内的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于两点.

(1)求椭圆的方程;

(2)若是弦的中点,是椭圆上一点,求的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点

1)求椭圆的方程;

2)是否存在经过点的直线,它与椭圆相交于两个不同点,且满足为坐标原点)关系的点也在椭圆上,如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:

使用年限

2

3

4

5

6

维修费用

2

4

5

6

7

若由资料知呈线性相关关系.试求:

1)求

2)线性回归方程

3)估计使用10年时,维修费用是多少?

附:利用最小二乘法计算的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是同一平面上不共线的四点,若存在一组正实数,使得,则三个角( )

A. 都是钝角B. 至少有两个钝角

C. 恰有两个钝角D. 至多有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为,作平面与底面不平行与棱分别交于EFGH,记EAFBGCHD分别为,若,则多面体EFGHABCD的体积为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程及曲线的直角坐标方程,并指出两曲线的轨迹图形;

(2)曲线与两坐标轴的交点分别为,点在曲线上运动,当曲线与曲线相切时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某公园内有两条道路,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知

(1)若绿化区域的面积为1,求道路的长度;

(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设),当为何值时,该计划所需总费用最小?

查看答案和解析>>

同步练习册答案