精英家教网 > 高中数学 > 题目详情

【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:

使用年限

2

3

4

5

6

维修费用

2

4

5

6

7

若由资料知呈线性相关关系.试求:

1)求

2)线性回归方程

3)估计使用10年时,维修费用是多少?

附:利用最小二乘法计算的值时,可根据以下公式:

【答案】1;(2;(3)维修费用为12万元

【解析】

1)利用的计算公式即可得出;(2)利用的计算公式得出结果,再求即可;(3)利用第(2)问得出的回归方程,计算x=10时的结果即可.

1
2=2×2+3×4+4×5+5×6+6×7=108=5×4×4.8=96=90=80
=1.2=4.8-1.2×4=0
所以,线性回归方程为=1.2x
3)当x=10时,y=12.
所以该设备使用10年,维修费用的估计值为12万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.

2007年

2008年

2009年

2010年

2011年

2012年

2013年

2014年

2015年

2016年

城镇

18.66

20.25

22.79

25

27.1

28.3

31.6

32.9

34.6

36.6

农村

23.3

24.8

26.5

27.9

30.7

32.4

34.1

37.1

41.2

45.8

(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;

(Ⅱ)在给出的10年数据中,随机抽取三年,记为同年中农村人均住房建筑面积超过城镇人均住房建筑面积4平方米的年数,求的分布列和数学期望

(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为,农村人均住房面积的方差为,判断的大小.(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体中,的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解年广告费(单位:万元)对年销售额(单位:万元)的影响,对近4年的年广告费和年销售额的数据作了初步整理,得到下面的表格:

年广告费/万元

2

3

4

5

年销售额/万元

26

39

49

54

(1)用年广告费作解释变量,年销售额作预报变量,在所给坐标系中作出这些数据的散点图,并判断哪一个更适合作为年销售额关于年广告费的回归方程类型(给出判断即可,不必说明理由).

(2)根据(1)的判断结果及表中数据,建立关于的回归方程.

(3)已知商品的年利润的关系为.根据(2)的结果,计算年广告费约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线),恰有一个公共点恰有一个公共点交于点.

(1)当时,求点准线的距离;

(2)当不垂直时,求的取值范围;

(3)设是平面上一点,满足,求的夹角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂在生产产品时需要用到长度为型和长度为型两种钢管.工厂利用长度为的钢管原材料,裁剪成若干型和型钢管,假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.

(1)要使裁剪的废料率小于,共有几种方案剪裁?请写出每种方案中分别被裁剪型钢管和型钢管的根数;

(2)假设一根型钢管和一根型钢管能成为一套毛胚,假定只能按(1)中的那些方案裁剪,若工厂需要生产套毛胚,则至少需要采购多少根长度为的钢管原材料?最终的废料率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1F2分别是椭圆的左、右焦点,过的直线相交 于AB两点,且|AF2||AB||BF2|成等差数列.

1)求|AB|

2)若直线的斜率为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,D点为棱AB的中点.

求证:平面

,求二面角的余弦值;

两两垂直,求证:此三棱柱为正三棱柱.

查看答案和解析>>

同步练习册答案